Details
Original language | English |
---|---|
Pages (from-to) | 689-702 |
Number of pages | 14 |
Journal | Journal of Systems Architecture |
Volume | 53 |
Issue number | 10 |
Publication status | Published - 20 Jan 2007 |
Externally published | Yes |
Abstract
In this contribution the concept of functional- level power analysis (FLPA) for power estimation of programmable processors is extended in order to model embedded as well as heterogeneous processor architectures featuring different embedded processor cores. The basic FLPA approach is based on the separation of the processor architecture into functional blocks like, e.g. processing unit, clock network, internal memory, etc. The power consumption of these blocks is described by parameterized arithmetic models. By application of a parser based automated analysis of assembler codes the input parameters of the arithmetic functions like e.g. the achieved degree of parallelism or the kind and number of memory accesses can be computed. For modeling an embedded general purpose processor (here, an ARM940T) the basic FLPA modeling concept had to be extended to a so-called hybrid functional-level and instruction-level (FLPA/ILPA) model in order to achieve a good modeling accuracy. In order to show the applicability of this approach even a heterogeneous processor architecture (OMAP5912) featuring an ARM926EJ-S core and a C55x DSP core has been modeled using the hybrid FLPA/ILPA technique described before. The approach is exemplarily demonstrated and evaluated applying a variety of basic digital signal processing tasks ranging from basic filters to complete audio decoders or classical benchmark suits. Estimated power figures for the inspected tasks are compared to physically measured values for both inspected processor architectures. A resulting maximum estimation error of 9% for the ARM940T and less than 4% for the OMAP5912 is achieved.
Keywords
- Embedded processors, Modeling accuracy, Power estimation
ASJC Scopus subject areas
- Computer Science(all)
- Software
- Computer Science(all)
- Hardware and Architecture
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Journal of Systems Architecture, Vol. 53, No. 10, 20.01.2007, p. 689-702.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Hybrid functional- and instruction-level power modeling for embedded and heterogeneous processor architectures
AU - Blume, H.
AU - Becker, D.
AU - Rotenberg, L.
AU - Botteck, M.
AU - Brakensiek, J.
AU - Noll, T. G.
PY - 2007/1/20
Y1 - 2007/1/20
N2 - In this contribution the concept of functional- level power analysis (FLPA) for power estimation of programmable processors is extended in order to model embedded as well as heterogeneous processor architectures featuring different embedded processor cores. The basic FLPA approach is based on the separation of the processor architecture into functional blocks like, e.g. processing unit, clock network, internal memory, etc. The power consumption of these blocks is described by parameterized arithmetic models. By application of a parser based automated analysis of assembler codes the input parameters of the arithmetic functions like e.g. the achieved degree of parallelism or the kind and number of memory accesses can be computed. For modeling an embedded general purpose processor (here, an ARM940T) the basic FLPA modeling concept had to be extended to a so-called hybrid functional-level and instruction-level (FLPA/ILPA) model in order to achieve a good modeling accuracy. In order to show the applicability of this approach even a heterogeneous processor architecture (OMAP5912) featuring an ARM926EJ-S core and a C55x DSP core has been modeled using the hybrid FLPA/ILPA technique described before. The approach is exemplarily demonstrated and evaluated applying a variety of basic digital signal processing tasks ranging from basic filters to complete audio decoders or classical benchmark suits. Estimated power figures for the inspected tasks are compared to physically measured values for both inspected processor architectures. A resulting maximum estimation error of 9% for the ARM940T and less than 4% for the OMAP5912 is achieved.
AB - In this contribution the concept of functional- level power analysis (FLPA) for power estimation of programmable processors is extended in order to model embedded as well as heterogeneous processor architectures featuring different embedded processor cores. The basic FLPA approach is based on the separation of the processor architecture into functional blocks like, e.g. processing unit, clock network, internal memory, etc. The power consumption of these blocks is described by parameterized arithmetic models. By application of a parser based automated analysis of assembler codes the input parameters of the arithmetic functions like e.g. the achieved degree of parallelism or the kind and number of memory accesses can be computed. For modeling an embedded general purpose processor (here, an ARM940T) the basic FLPA modeling concept had to be extended to a so-called hybrid functional-level and instruction-level (FLPA/ILPA) model in order to achieve a good modeling accuracy. In order to show the applicability of this approach even a heterogeneous processor architecture (OMAP5912) featuring an ARM926EJ-S core and a C55x DSP core has been modeled using the hybrid FLPA/ILPA technique described before. The approach is exemplarily demonstrated and evaluated applying a variety of basic digital signal processing tasks ranging from basic filters to complete audio decoders or classical benchmark suits. Estimated power figures for the inspected tasks are compared to physically measured values for both inspected processor architectures. A resulting maximum estimation error of 9% for the ARM940T and less than 4% for the OMAP5912 is achieved.
KW - Embedded processors
KW - Modeling accuracy
KW - Power estimation
UR - http://www.scopus.com/inward/record.url?scp=34248536304&partnerID=8YFLogxK
U2 - 10.1016/j.sysarc.2007.01.002
DO - 10.1016/j.sysarc.2007.01.002
M3 - Article
AN - SCOPUS:34248536304
VL - 53
SP - 689
EP - 702
JO - Journal of Systems Architecture
JF - Journal of Systems Architecture
SN - 1383-7621
IS - 10
ER -