How Green is AutoML for Tabular Data?

Research output: Chapter in book/report/conference proceedingConference contributionResearchpeer review

Authors

Research Organisations

View graph of relations

Details

Original languageEnglish
Title of host publicationProceedings of EDBT 2025
ISBN (electronic)978-3-89318-098-1
Publication statusAccepted/In press - Oct 2024

Cite this

How Green is AutoML for Tabular Data? / Neutatz, Felix; Lindauer, Marius; Abedjan, Ziawasch.
Proceedings of EDBT 2025. 2025.

Research output: Chapter in book/report/conference proceedingConference contributionResearchpeer review

Neutatz, F., Lindauer, M., & Abedjan, Z. (Accepted/in press). How Green is AutoML for Tabular Data? In Proceedings of EDBT 2025 https://openproceedings.org/2025/conf/edbt/paper-97.pdf
Neutatz F, Lindauer M, Abedjan Z. How Green is AutoML for Tabular Data? In Proceedings of EDBT 2025. 2025
Neutatz, Felix ; Lindauer, Marius ; Abedjan, Ziawasch. / How Green is AutoML for Tabular Data?. Proceedings of EDBT 2025. 2025.
Download
@inproceedings{6bb5714b0eb44b1ab24ad09b9c2aafcb,
title = "How Green is AutoML for Tabular Data?",
author = "Felix Neutatz and Marius Lindauer and Ziawasch Abedjan",
year = "2024",
month = oct,
language = "English",
booktitle = "Proceedings of EDBT 2025",

}

Download

TY - GEN

T1 - How Green is AutoML for Tabular Data?

AU - Neutatz, Felix

AU - Lindauer, Marius

AU - Abedjan, Ziawasch

PY - 2024/10

Y1 - 2024/10

M3 - Conference contribution

BT - Proceedings of EDBT 2025

ER -

By the same author(s)