Details
Original language | English |
---|---|
Pages (from-to) | 349-359 |
Number of pages | 11 |
Journal | Physiological entomology |
Volume | 19 |
Issue number | 4 |
Publication status | Published - Dec 1994 |
Externally published | Yes |
Abstract
Abstract. The aim of this study was to characterize the vibrations produced by the apple tentiform leafminer Phyllonorycter malella (Ger.) (Lepidoptera, Gracillariidae). Host location using vibrations by one of its parasitoids Sympiesis sericeicornis Nees (Hymenoptera, Eulophidae) was postulated by Casas (1989) on the basis of detailed quantitative behavioural observations and has also been suggested by other authors on similar systems. Both host and parasitoid send and may receive vibratory signals; consequently we first attempted to characterize and classify the signals, one of the first steps required in the design of an adequate vibrational biotest. In this respect, our approach differs fundamentally from the familiar setting of host location via semiochemicals and is best framed within the context of vibratory communication. Vibrational signals produced by a moving larva and pupa were measured on several spots on the leaf using a laser vibrometer. The emitted signals were characterized by their temporal patterns of change in amplitude and frequency spectra. The vibrational patterns released by a moving larva were different from those released by a wriggling larva and a wriggling pupa in the time as well as in the frequency domains. Wriggling larvae and wriggling pupae triggered vibrations that were similar in frequency, but differed in their temporal pattern. Frequencies up to 15 kHz could be identified. The amplitudes and frequencies of the signals both decreased significantly from the tip to the base of the leaf. A wriggling pupa and a wriggling larva produced stronger signals than a foraging larva. All calculated parameters (displacement, velocity, acceleration, and duration of the signal components) of the vibrational signals were found to be in a range comparable with others used for well‐known arthropod communication systems. The vibrations produced by the host displayed distinct characteristics: they could usually be distinguished easily from background noise; could be perceived anywhere on the leaf; and were specific for a certain host stage and activity. Our findings support the hypothesis that vibration signals represent a reliable source of information to foraging parasitoids and, therefore, explain certain behavioural patterns observed in a population of S. sericeicornis females foraging in the field.
Keywords
- foraging behaviour, host location, laser vibrometry, mechanoreception, parasitoid, Phyllonorycter, sympiesis, vibrations, vibratory communication
ASJC Scopus subject areas
- Biochemistry, Genetics and Molecular Biology(all)
- Physiology
- Agricultural and Biological Sciences(all)
- Ecology, Evolution, Behavior and Systematics
- Agricultural and Biological Sciences(all)
- Insect Science
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Physiological entomology, Vol. 19, No. 4, 12.1994, p. 349-359.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Host location by a parasitoid using leafminer vibrations
T2 - characterizing the vibrational signals produced by the leafmining host
AU - MEYHÖFER, R.
AU - CASAS, J.
AU - DORN, S.
PY - 1994/12
Y1 - 1994/12
N2 - Abstract. The aim of this study was to characterize the vibrations produced by the apple tentiform leafminer Phyllonorycter malella (Ger.) (Lepidoptera, Gracillariidae). Host location using vibrations by one of its parasitoids Sympiesis sericeicornis Nees (Hymenoptera, Eulophidae) was postulated by Casas (1989) on the basis of detailed quantitative behavioural observations and has also been suggested by other authors on similar systems. Both host and parasitoid send and may receive vibratory signals; consequently we first attempted to characterize and classify the signals, one of the first steps required in the design of an adequate vibrational biotest. In this respect, our approach differs fundamentally from the familiar setting of host location via semiochemicals and is best framed within the context of vibratory communication. Vibrational signals produced by a moving larva and pupa were measured on several spots on the leaf using a laser vibrometer. The emitted signals were characterized by their temporal patterns of change in amplitude and frequency spectra. The vibrational patterns released by a moving larva were different from those released by a wriggling larva and a wriggling pupa in the time as well as in the frequency domains. Wriggling larvae and wriggling pupae triggered vibrations that were similar in frequency, but differed in their temporal pattern. Frequencies up to 15 kHz could be identified. The amplitudes and frequencies of the signals both decreased significantly from the tip to the base of the leaf. A wriggling pupa and a wriggling larva produced stronger signals than a foraging larva. All calculated parameters (displacement, velocity, acceleration, and duration of the signal components) of the vibrational signals were found to be in a range comparable with others used for well‐known arthropod communication systems. The vibrations produced by the host displayed distinct characteristics: they could usually be distinguished easily from background noise; could be perceived anywhere on the leaf; and were specific for a certain host stage and activity. Our findings support the hypothesis that vibration signals represent a reliable source of information to foraging parasitoids and, therefore, explain certain behavioural patterns observed in a population of S. sericeicornis females foraging in the field.
AB - Abstract. The aim of this study was to characterize the vibrations produced by the apple tentiform leafminer Phyllonorycter malella (Ger.) (Lepidoptera, Gracillariidae). Host location using vibrations by one of its parasitoids Sympiesis sericeicornis Nees (Hymenoptera, Eulophidae) was postulated by Casas (1989) on the basis of detailed quantitative behavioural observations and has also been suggested by other authors on similar systems. Both host and parasitoid send and may receive vibratory signals; consequently we first attempted to characterize and classify the signals, one of the first steps required in the design of an adequate vibrational biotest. In this respect, our approach differs fundamentally from the familiar setting of host location via semiochemicals and is best framed within the context of vibratory communication. Vibrational signals produced by a moving larva and pupa were measured on several spots on the leaf using a laser vibrometer. The emitted signals were characterized by their temporal patterns of change in amplitude and frequency spectra. The vibrational patterns released by a moving larva were different from those released by a wriggling larva and a wriggling pupa in the time as well as in the frequency domains. Wriggling larvae and wriggling pupae triggered vibrations that were similar in frequency, but differed in their temporal pattern. Frequencies up to 15 kHz could be identified. The amplitudes and frequencies of the signals both decreased significantly from the tip to the base of the leaf. A wriggling pupa and a wriggling larva produced stronger signals than a foraging larva. All calculated parameters (displacement, velocity, acceleration, and duration of the signal components) of the vibrational signals were found to be in a range comparable with others used for well‐known arthropod communication systems. The vibrations produced by the host displayed distinct characteristics: they could usually be distinguished easily from background noise; could be perceived anywhere on the leaf; and were specific for a certain host stage and activity. Our findings support the hypothesis that vibration signals represent a reliable source of information to foraging parasitoids and, therefore, explain certain behavioural patterns observed in a population of S. sericeicornis females foraging in the field.
KW - foraging behaviour
KW - host location
KW - laser vibrometry
KW - mechanoreception
KW - parasitoid
KW - Phyllonorycter
KW - sympiesis
KW - vibrations
KW - vibratory communication
UR - http://www.scopus.com/inward/record.url?scp=0028191895&partnerID=8YFLogxK
U2 - 10.1111/j.1365-3032.1994.tb01062.x
DO - 10.1111/j.1365-3032.1994.tb01062.x
M3 - Article
AN - SCOPUS:0028191895
VL - 19
SP - 349
EP - 359
JO - Physiological entomology
JF - Physiological entomology
SN - 0307-6962
IS - 4
ER -