Details
Original language | English |
---|---|
Article number | 150 |
Number of pages | 10 |
Journal | Light: Science and Applications |
Volume | 13 |
Issue number | 1 |
Early online date | 2 Jul 2024 |
Publication status | Published - Dec 2024 |
Abstract
Quantum key distribution (QKD) enables the transmission of information that is secure against general attacks by eavesdroppers. The use of on-demand quantum light sources in QKD protocols is expected to help improve security and maximum tolerable loss. Semiconductor quantum dots (QDs) are a promising building block for quantum communication applications because of the deterministic emission of single photons with high brightness and low multiphoton contribution. Here we report on the first intercity QKD experiment using a bright deterministic single photon source. A BB84 protocol based on polarisation encoding is realised using the high-rate single photons in the telecommunication C-band emitted from a semiconductor QD embedded in a circular Bragg grating structure. Utilising the 79 km long link with 25.49 dB loss (equivalent to 130 km for the direct-connected optical fibre) between the German cities of Hannover and Braunschweig, a record-high secret key bits per pulse of 4.8 × 10−5 with an average quantum bit error ratio of ~ 0.65% are demonstrated. An asymptotic maximum tolerable loss of 28.11 dB is found, corresponding to a length of 144 km of standard telecommunication fibre. Deterministic semiconductor sources therefore challenge state-of-the-art QKD protocols and have the potential to excel in measurement device independent protocols and quantum repeater applications.
ASJC Scopus subject areas
- Materials Science(all)
- Electronic, Optical and Magnetic Materials
- Physics and Astronomy(all)
- Atomic and Molecular Physics, and Optics
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Light: Science and Applications, Vol. 13, No. 1, 150, 12.2024.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - High-rate intercity quantum key distribution with a semiconductor single-photon source
AU - Yang, Jingzhong
AU - Jiang, Zenghui
AU - Benthin, Frederik
AU - Hanel, Joscha
AU - Fandrich, Tom
AU - Joos, Raphael
AU - Bauer, Stephanie
AU - Kolatschek, Sascha
AU - Hreibi, Ali
AU - Rugeramigabo, Eddy Patrick
AU - Jetter, Michael
AU - Portalupi, Simone Luca
AU - Zopf, Michael
AU - Michler, Peter
AU - Kück, Stefan
AU - Ding, Fei
N1 - Publisher Copyright: © The Author(s) 2024.
PY - 2024/12
Y1 - 2024/12
N2 - Quantum key distribution (QKD) enables the transmission of information that is secure against general attacks by eavesdroppers. The use of on-demand quantum light sources in QKD protocols is expected to help improve security and maximum tolerable loss. Semiconductor quantum dots (QDs) are a promising building block for quantum communication applications because of the deterministic emission of single photons with high brightness and low multiphoton contribution. Here we report on the first intercity QKD experiment using a bright deterministic single photon source. A BB84 protocol based on polarisation encoding is realised using the high-rate single photons in the telecommunication C-band emitted from a semiconductor QD embedded in a circular Bragg grating structure. Utilising the 79 km long link with 25.49 dB loss (equivalent to 130 km for the direct-connected optical fibre) between the German cities of Hannover and Braunschweig, a record-high secret key bits per pulse of 4.8 × 10−5 with an average quantum bit error ratio of ~ 0.65% are demonstrated. An asymptotic maximum tolerable loss of 28.11 dB is found, corresponding to a length of 144 km of standard telecommunication fibre. Deterministic semiconductor sources therefore challenge state-of-the-art QKD protocols and have the potential to excel in measurement device independent protocols and quantum repeater applications.
AB - Quantum key distribution (QKD) enables the transmission of information that is secure against general attacks by eavesdroppers. The use of on-demand quantum light sources in QKD protocols is expected to help improve security and maximum tolerable loss. Semiconductor quantum dots (QDs) are a promising building block for quantum communication applications because of the deterministic emission of single photons with high brightness and low multiphoton contribution. Here we report on the first intercity QKD experiment using a bright deterministic single photon source. A BB84 protocol based on polarisation encoding is realised using the high-rate single photons in the telecommunication C-band emitted from a semiconductor QD embedded in a circular Bragg grating structure. Utilising the 79 km long link with 25.49 dB loss (equivalent to 130 km for the direct-connected optical fibre) between the German cities of Hannover and Braunschweig, a record-high secret key bits per pulse of 4.8 × 10−5 with an average quantum bit error ratio of ~ 0.65% are demonstrated. An asymptotic maximum tolerable loss of 28.11 dB is found, corresponding to a length of 144 km of standard telecommunication fibre. Deterministic semiconductor sources therefore challenge state-of-the-art QKD protocols and have the potential to excel in measurement device independent protocols and quantum repeater applications.
UR - http://www.scopus.com/inward/record.url?scp=85197276775&partnerID=8YFLogxK
U2 - 10.1038/s41377-024-01488-0
DO - 10.1038/s41377-024-01488-0
M3 - Article
AN - SCOPUS:85197276775
VL - 13
JO - Light: Science and Applications
JF - Light: Science and Applications
SN - 2095-5545
IS - 1
M1 - 150
ER -