High-rate atomic layer deposition of Al2O3 for the surface passivation of Si solar cells

Research output: Contribution to journalArticleResearchpeer review

Authors

  • Florian Werner
  • Walter Stals
  • Roger Görtzen
  • Boris Veith
  • Rolf Brendel
  • Jan Schmidt

Research Organisations

External Research Organisations

  • Institute for Solar Energy Research (ISFH)
  • SoLayTec
View graph of relations

Details

Original languageEnglish
Pages (from-to)301-306
Number of pages6
JournalEnergy Procedia
Volume8
Early online date12 Aug 2011
Publication statusPublished - 2011

Abstract

High-rate spatial atomic layer deposition (ALD) enables an industrially relevant deposition of high-quality aluminum oxide (Al2O3) films for the surface passivation of silicon solar cells. We demonstrate a homogeneous surface passivation at a deposition rate of ∼30 nm/min on 15.6×15.6 cm2 silicon wafers of 10 nm thick Al 2O3 layers deposited in a novel inline spatial ALD system. The effective surface recombination velocity on n-type Czochralski-grown (Cz) silicon wafers is shown to be virtually independent of injection level. Surface recombination velocities below 2.9 cm/s and an extremely low interface state density below 8×1010 eV-1cm-2 are achieved. We demonstrate that the novel inline spatial ALD system provides the means to integrate Al2O3 passivation layers into industrial solar cells.

Keywords

    Aluminum oxide, Silicon, Spatial ALD, Surface passivation

ASJC Scopus subject areas

Cite this

High-rate atomic layer deposition of Al2O3 for the surface passivation of Si solar cells. / Werner, Florian; Stals, Walter; Görtzen, Roger et al.
In: Energy Procedia, Vol. 8, 2011, p. 301-306.

Research output: Contribution to journalArticleResearchpeer review

Werner, F, Stals, W, Görtzen, R, Veith, B, Brendel, R & Schmidt, J 2011, 'High-rate atomic layer deposition of Al2O3 for the surface passivation of Si solar cells', Energy Procedia, vol. 8, pp. 301-306. https://doi.org/10.1016/j.egypro.2011.06.140
Werner, F., Stals, W., Görtzen, R., Veith, B., Brendel, R., & Schmidt, J. (2011). High-rate atomic layer deposition of Al2O3 for the surface passivation of Si solar cells. Energy Procedia, 8, 301-306. https://doi.org/10.1016/j.egypro.2011.06.140
Werner F, Stals W, Görtzen R, Veith B, Brendel R, Schmidt J. High-rate atomic layer deposition of Al2O3 for the surface passivation of Si solar cells. Energy Procedia. 2011;8:301-306. Epub 2011 Aug 12. doi: 10.1016/j.egypro.2011.06.140
Werner, Florian ; Stals, Walter ; Görtzen, Roger et al. / High-rate atomic layer deposition of Al2O3 for the surface passivation of Si solar cells. In: Energy Procedia. 2011 ; Vol. 8. pp. 301-306.
Download
@article{fe75e148adb6447aad33978247ba27ab,
title = "High-rate atomic layer deposition of Al2O3 for the surface passivation of Si solar cells",
abstract = "High-rate spatial atomic layer deposition (ALD) enables an industrially relevant deposition of high-quality aluminum oxide (Al2O3) films for the surface passivation of silicon solar cells. We demonstrate a homogeneous surface passivation at a deposition rate of ∼30 nm/min on 15.6×15.6 cm2 silicon wafers of 10 nm thick Al 2O3 layers deposited in a novel inline spatial ALD system. The effective surface recombination velocity on n-type Czochralski-grown (Cz) silicon wafers is shown to be virtually independent of injection level. Surface recombination velocities below 2.9 cm/s and an extremely low interface state density below 8×1010 eV-1cm-2 are achieved. We demonstrate that the novel inline spatial ALD system provides the means to integrate Al2O3 passivation layers into industrial solar cells.",
keywords = "Aluminum oxide, Silicon, Spatial ALD, Surface passivation",
author = "Florian Werner and Walter Stals and Roger G{\"o}rtzen and Boris Veith and Rolf Brendel and Jan Schmidt",
year = "2011",
doi = "10.1016/j.egypro.2011.06.140",
language = "English",
volume = "8",
pages = "301--306",

}

Download

TY - JOUR

T1 - High-rate atomic layer deposition of Al2O3 for the surface passivation of Si solar cells

AU - Werner, Florian

AU - Stals, Walter

AU - Görtzen, Roger

AU - Veith, Boris

AU - Brendel, Rolf

AU - Schmidt, Jan

PY - 2011

Y1 - 2011

N2 - High-rate spatial atomic layer deposition (ALD) enables an industrially relevant deposition of high-quality aluminum oxide (Al2O3) films for the surface passivation of silicon solar cells. We demonstrate a homogeneous surface passivation at a deposition rate of ∼30 nm/min on 15.6×15.6 cm2 silicon wafers of 10 nm thick Al 2O3 layers deposited in a novel inline spatial ALD system. The effective surface recombination velocity on n-type Czochralski-grown (Cz) silicon wafers is shown to be virtually independent of injection level. Surface recombination velocities below 2.9 cm/s and an extremely low interface state density below 8×1010 eV-1cm-2 are achieved. We demonstrate that the novel inline spatial ALD system provides the means to integrate Al2O3 passivation layers into industrial solar cells.

AB - High-rate spatial atomic layer deposition (ALD) enables an industrially relevant deposition of high-quality aluminum oxide (Al2O3) films for the surface passivation of silicon solar cells. We demonstrate a homogeneous surface passivation at a deposition rate of ∼30 nm/min on 15.6×15.6 cm2 silicon wafers of 10 nm thick Al 2O3 layers deposited in a novel inline spatial ALD system. The effective surface recombination velocity on n-type Czochralski-grown (Cz) silicon wafers is shown to be virtually independent of injection level. Surface recombination velocities below 2.9 cm/s and an extremely low interface state density below 8×1010 eV-1cm-2 are achieved. We demonstrate that the novel inline spatial ALD system provides the means to integrate Al2O3 passivation layers into industrial solar cells.

KW - Aluminum oxide

KW - Silicon

KW - Spatial ALD

KW - Surface passivation

UR - http://www.scopus.com/inward/record.url?scp=80052084033&partnerID=8YFLogxK

U2 - 10.1016/j.egypro.2011.06.140

DO - 10.1016/j.egypro.2011.06.140

M3 - Article

AN - SCOPUS:80052084033

VL - 8

SP - 301

EP - 306

JO - Energy Procedia

JF - Energy Procedia

SN - 1876-6102

ER -

By the same author(s)