Details
Original language | English |
---|---|
Pages (from-to) | 655-662 |
Number of pages | 8 |
Journal | International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives |
Volume | 41 |
Publication status | Published - 2016 |
Event | 23rd International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences Congress, ISPRS 2016 - Prague, Czech Republic Duration: 12 Jul 2016 → 19 Jul 2016 |
Abstract
We propose a novel hierarchical approach for the classification of airborne 3D lidar points. Spatial and semantic context is incorporated via a two-layer Conditional Random Field (CRF). The first layer operates on a point level and utilises higher order cliques. Segments are generated from the labelling obtained in this way. They are the entities of the second layer, which incorporates larger scale context. The classification result of the segments is introduced as an energy term for the next iteration of the point-based layer. This framework iterates and mutually propagates context to improve the classification results. Potentially wrong decisions can be revised at later stages. The output is a labelled point cloud as well as segments roughly corresponding to object instances. Moreover, we present two new contextual features for the segment classification: The distance and the orientation of a segment with respect to the closest road. It is shown that the classification benefits from these features. In our experiments the hierarchical framework improve the overall accuracies by 2.3% on a point-based level and by 3.0% on a segment-based level, respectively, compared to a purely point-based classification.
Keywords
- Classification, Contextual, Higher Order Random Fields, Lidar, Point Cloud, Urban
ASJC Scopus subject areas
- Computer Science(all)
- Information Systems
- Social Sciences(all)
- Geography, Planning and Development
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives, Vol. 41, 2016, p. 655-662.
Research output: Contribution to journal › Conference article › Research › peer review
}
TY - JOUR
T1 - Hierarchical higher order crf for the classification of airborne lidar point clouds in urban areas
AU - Niemeyer, J.
AU - Rottensteiner, F.
AU - Soergel, U.
AU - Heipke, C.
PY - 2016
Y1 - 2016
N2 - We propose a novel hierarchical approach for the classification of airborne 3D lidar points. Spatial and semantic context is incorporated via a two-layer Conditional Random Field (CRF). The first layer operates on a point level and utilises higher order cliques. Segments are generated from the labelling obtained in this way. They are the entities of the second layer, which incorporates larger scale context. The classification result of the segments is introduced as an energy term for the next iteration of the point-based layer. This framework iterates and mutually propagates context to improve the classification results. Potentially wrong decisions can be revised at later stages. The output is a labelled point cloud as well as segments roughly corresponding to object instances. Moreover, we present two new contextual features for the segment classification: The distance and the orientation of a segment with respect to the closest road. It is shown that the classification benefits from these features. In our experiments the hierarchical framework improve the overall accuracies by 2.3% on a point-based level and by 3.0% on a segment-based level, respectively, compared to a purely point-based classification.
AB - We propose a novel hierarchical approach for the classification of airborne 3D lidar points. Spatial and semantic context is incorporated via a two-layer Conditional Random Field (CRF). The first layer operates on a point level and utilises higher order cliques. Segments are generated from the labelling obtained in this way. They are the entities of the second layer, which incorporates larger scale context. The classification result of the segments is introduced as an energy term for the next iteration of the point-based layer. This framework iterates and mutually propagates context to improve the classification results. Potentially wrong decisions can be revised at later stages. The output is a labelled point cloud as well as segments roughly corresponding to object instances. Moreover, we present two new contextual features for the segment classification: The distance and the orientation of a segment with respect to the closest road. It is shown that the classification benefits from these features. In our experiments the hierarchical framework improve the overall accuracies by 2.3% on a point-based level and by 3.0% on a segment-based level, respectively, compared to a purely point-based classification.
KW - Classification
KW - Contextual
KW - Higher Order Random Fields
KW - Lidar
KW - Point Cloud
KW - Urban
UR - http://www.scopus.com/inward/record.url?scp=84978062504&partnerID=8YFLogxK
U2 - 10.5194/isprsarchives-XLI-B3-655-2016
DO - 10.5194/isprsarchives-XLI-B3-655-2016
M3 - Conference article
AN - SCOPUS:84978062504
VL - 41
SP - 655
EP - 662
JO - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives
JF - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences - ISPRS Archives
SN - 1682-1750
T2 - 23rd International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences Congress, ISPRS 2016
Y2 - 12 July 2016 through 19 July 2016
ER -