Hamiltonian structure of propagation equations for ultrashort optical pulses

Research output: Contribution to journalArticleResearchpeer review

Authors

External Research Organisations

  • Weierstrass Institute for Applied Analysis and Stochastics (WIAS) Weierstraß-Institut für Angewandte Analysis und Stochastik (WIAS) Leibniz-Institute in Forschungsverbund Berlin e. V.
View graph of relations

Details

Original languageEnglish
Article number013812
JournalPhysical Review A - Atomic, Molecular, and Optical Physics
Volume82
Issue number1
Publication statusPublished - 13 Jul 2010
Externally publishedYes

Abstract

A Hamiltonian framework is developed for a sequence of ultrashort optical pulses propagating in a nonlinear dispersive medium. To this end a second-order nonlinear wave equation for the electric field is transformed into a first-order propagation equation for a suitably defined complex electric field. The Hamiltonian formulation is then introduced in terms of normal variables, i.e., classical complex fields referring to the quantum creation and annihilation operators. The derived z-propagated Hamiltonian accounts for forward and backward waves, arbitrary medium dispersion, and four-wave mixing processes. As a simple application we obtain integrals of motion for the pulse propagation. The integrals reflect time-averaged fluxes of energy, momentum, and photons transferred by the pulse. Furthermore, pulses in the form of stationary nonlinear waves are considered. They yield extremal values of the momentum flux for a given energy flux. Simplified propagation equations are obtained by reduction of the Hamiltonian. In particular, the complex electric field reduces to an analytic signal for the unidirectional propagation. Solutions of the full bidirectional model are numerically compared to the predictions of the simplified equation for the analytic signal and to the so-called forward Maxwell equation. The numerics is effectively tested by examining the conservation laws.

ASJC Scopus subject areas

Cite this

Hamiltonian structure of propagation equations for ultrashort optical pulses. / Amiranashvili, Sh; Demircan, A.
In: Physical Review A - Atomic, Molecular, and Optical Physics, Vol. 82, No. 1, 013812, 13.07.2010.

Research output: Contribution to journalArticleResearchpeer review

Download
@article{1a4dca5af8c94795b79fefa36110f44a,
title = "Hamiltonian structure of propagation equations for ultrashort optical pulses",
abstract = "A Hamiltonian framework is developed for a sequence of ultrashort optical pulses propagating in a nonlinear dispersive medium. To this end a second-order nonlinear wave equation for the electric field is transformed into a first-order propagation equation for a suitably defined complex electric field. The Hamiltonian formulation is then introduced in terms of normal variables, i.e., classical complex fields referring to the quantum creation and annihilation operators. The derived z-propagated Hamiltonian accounts for forward and backward waves, arbitrary medium dispersion, and four-wave mixing processes. As a simple application we obtain integrals of motion for the pulse propagation. The integrals reflect time-averaged fluxes of energy, momentum, and photons transferred by the pulse. Furthermore, pulses in the form of stationary nonlinear waves are considered. They yield extremal values of the momentum flux for a given energy flux. Simplified propagation equations are obtained by reduction of the Hamiltonian. In particular, the complex electric field reduces to an analytic signal for the unidirectional propagation. Solutions of the full bidirectional model are numerically compared to the predictions of the simplified equation for the analytic signal and to the so-called forward Maxwell equation. The numerics is effectively tested by examining the conservation laws.",
author = "Sh Amiranashvili and A. Demircan",
year = "2010",
month = jul,
day = "13",
doi = "10.1103/PhysRevA.82.013812",
language = "English",
volume = "82",
journal = "Physical Review A - Atomic, Molecular, and Optical Physics",
issn = "1050-2947",
publisher = "American Physical Society",
number = "1",

}

Download

TY - JOUR

T1 - Hamiltonian structure of propagation equations for ultrashort optical pulses

AU - Amiranashvili, Sh

AU - Demircan, A.

PY - 2010/7/13

Y1 - 2010/7/13

N2 - A Hamiltonian framework is developed for a sequence of ultrashort optical pulses propagating in a nonlinear dispersive medium. To this end a second-order nonlinear wave equation for the electric field is transformed into a first-order propagation equation for a suitably defined complex electric field. The Hamiltonian formulation is then introduced in terms of normal variables, i.e., classical complex fields referring to the quantum creation and annihilation operators. The derived z-propagated Hamiltonian accounts for forward and backward waves, arbitrary medium dispersion, and four-wave mixing processes. As a simple application we obtain integrals of motion for the pulse propagation. The integrals reflect time-averaged fluxes of energy, momentum, and photons transferred by the pulse. Furthermore, pulses in the form of stationary nonlinear waves are considered. They yield extremal values of the momentum flux for a given energy flux. Simplified propagation equations are obtained by reduction of the Hamiltonian. In particular, the complex electric field reduces to an analytic signal for the unidirectional propagation. Solutions of the full bidirectional model are numerically compared to the predictions of the simplified equation for the analytic signal and to the so-called forward Maxwell equation. The numerics is effectively tested by examining the conservation laws.

AB - A Hamiltonian framework is developed for a sequence of ultrashort optical pulses propagating in a nonlinear dispersive medium. To this end a second-order nonlinear wave equation for the electric field is transformed into a first-order propagation equation for a suitably defined complex electric field. The Hamiltonian formulation is then introduced in terms of normal variables, i.e., classical complex fields referring to the quantum creation and annihilation operators. The derived z-propagated Hamiltonian accounts for forward and backward waves, arbitrary medium dispersion, and four-wave mixing processes. As a simple application we obtain integrals of motion for the pulse propagation. The integrals reflect time-averaged fluxes of energy, momentum, and photons transferred by the pulse. Furthermore, pulses in the form of stationary nonlinear waves are considered. They yield extremal values of the momentum flux for a given energy flux. Simplified propagation equations are obtained by reduction of the Hamiltonian. In particular, the complex electric field reduces to an analytic signal for the unidirectional propagation. Solutions of the full bidirectional model are numerically compared to the predictions of the simplified equation for the analytic signal and to the so-called forward Maxwell equation. The numerics is effectively tested by examining the conservation laws.

UR - http://www.scopus.com/inward/record.url?scp=77954835507&partnerID=8YFLogxK

U2 - 10.1103/PhysRevA.82.013812

DO - 10.1103/PhysRevA.82.013812

M3 - Article

AN - SCOPUS:77954835507

VL - 82

JO - Physical Review A - Atomic, Molecular, and Optical Physics

JF - Physical Review A - Atomic, Molecular, and Optical Physics

SN - 1050-2947

IS - 1

M1 - 013812

ER -

By the same author(s)