Details
Original language | English |
---|---|
Article number | 043015 |
Number of pages | 29 |
Journal | Physical Review D |
Volume | 102 |
Issue number | 4 |
Publication status | Published - 24 Aug 2020 |
Abstract
We report the observation of gravitational waves from a binary-black-hole coalescence during the first two weeks of LIGO's and Virgo's third observing run. The signal was recorded on April 12, 2019 at 05â¶30â¶44 UTC with a network signal-to-noise ratio of 19. The binary is different from observations during the first two observing runs most notably due to its asymmetric masses: A ∼30 M⊙ black hole merged with a ∼8 M⊙ black hole companion. The more massive black hole rotated with a dimensionless spin magnitude between 0.22 and 0.60 (90% probability). Asymmetric systems are predicted to emit gravitational waves with stronger contributions from higher multipoles, and indeed we find strong evidence for gravitational radiation beyond the leading quadrupolar order in the observed signal. A suite of tests performed on GW190412 indicates consistency with Einstein's general theory of relativity. While the mass ratio of this system differs from all previous detections, we show that it is consistent with the population model of stellar binary black holes inferred from the first two observing runs.
ASJC Scopus subject areas
- Physics and Astronomy(all)
- Physics and Astronomy (miscellaneous)
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Physical Review D, Vol. 102, No. 4, 043015, 24.08.2020.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - GW190412: Observation of a binary-black-hole coalescence with asymmetric masses
AU - The LIGO Scientific Collaboration
AU - The Virgo Collaboration
AU - Abbott, R.
AU - Abbott, T. D.
AU - Abraham, S.
AU - Acernese, F.
AU - Ackley, K.
AU - Adams, C.
AU - Adhikari, R. X.
AU - Adya, V. B.
AU - Affeldt, C.
AU - Agathos, M.
AU - Agatsuma, K.
AU - Aggarwal, N.
AU - Aguiar, O. D.
AU - Aich, A.
AU - Aiello, L.
AU - Ain, A.
AU - Ajith, P.
AU - Akcay, S.
AU - Allen, G.
AU - Allocca, A.
AU - Altin, P. A.
AU - Amato, A.
AU - Anand, S.
AU - Ananyeva, A.
AU - Anderson, S. B.
AU - Anderson, W. G.
AU - Angelova, S. V.
AU - Ansoldi, S.
AU - Antier, S.
AU - Appert, S.
AU - Arai, K.
AU - Araya, M. C.
AU - Areeda, J. S.
AU - Arène, M.
AU - Arnaud, N.
AU - Aronson, S. M.
AU - Arun, K. G.
AU - Asali, Y.
AU - Ascenzi, S.
AU - Ashton, G.
AU - Danilishin, S. L.
AU - Danzmann, K.
AU - Heurs, M.
AU - Lück, H.
AU - Steinmeyer, D.
AU - Vahlbruch, H.
AU - Wei, L.-w.
AU - Wilken, D. M.
AU - Willke, B.
AU - Wittel, H.
AU - Bose, Sukanta
AU - Brown, D. D.
AU - Chen, Y. B.
AU - Gniesmer, J.
AU - Hanke, Manuela
AU - Hennig, J.
AU - Hübner, M. T.
AU - Kumar, Sanjeev
AU - Lang, R. N.
AU - Lee, C. H.
AU - Lee, H. M.
AU - Lee, H. W.
AU - Lee, J.
AU - Lee, K.
AU - Li, X.
AU - Rose, C. A.
AU - Rose, D.
AU - Sanders, J. R.
AU - Schmidt, Patricia
AU - Sun, L.
AU - Wang, Y. F.
AU - White, L. V.
AU - Wu, D. S.
AU - Zhang, L.
AU - Zhu, X. J.
AU - Zhou, Minchuan
AU - Bergamin, Fabio
AU - Bisht, Aparna
AU - Bode, Nina
AU - Booker, P.
AU - Brinkmann, Marc
AU - Cabero, M.
AU - Gohlke, N.
AU - Heinze, J.
AU - de Varona, O.
AU - Hochheim, S.
AU - Junker, J.
AU - Kastaun, W.
AU - Kaufer, Stefan
AU - Khan, S.
AU - Kirchhoff, R.
AU - Koch, P.
AU - Köhlenbeck, S. M.
AU - Kringel, Volker
AU - Krishnady, N. V.
AU - Kuehn, G.
AU - Leavey, S.
AU - Lehmann, J.
AU - Liu, J.
AU - Lough, James
AU - Mehmet, Moritz
AU - Meylahn, Fabian
AU - Mukund, Nikhil
AU - Nery, M.
AU - Ohme, F.
AU - Oppermann, P.
AU - Schreiber, Emil
AU - Schulte, B. W.
AU - Setyawati, Y.
AU - Phelps, M.
AU - Standke, M.
AU - Steinke, M.
AU - Weinert, Michael
AU - Wellmann, F.
AU - Weßels, Peter
AU - Winkler, W.
AU - Woehler, J.
AU - Aufmuth, Peter
AU - Bergmann, Gerald
AU - Koper, N.
N1 - Funding Information: The authors gratefully acknowledge the support of the United States National Science Foundation (NSF) for the construction and operation of the LIGO Laboratory and Advanced LIGO as well as the Science and Technology Facilities Council (STFC) of the United Kingdom, the Max-Planck-Society (MPS), and the State of Niedersachsen/Germany for support of the construction of Advanced LIGO and construction and operation of the GEO600 detector. Additional support for Advanced LIGO was provided by the Australian Research Council. The authors gratefully acknowledge the Italian Istituto Nazionale di Fisica Nucleare (INFN), the French Centre National de la Recherche Scientifique (CNRS) and the Netherlands Organization for Scientific Research, for the construction and operation of the Virgo detector and the creation and support of the EGO consortium. The authors also gratefully acknowledge research support from these agencies as well as by the Council of Scientific and Industrial Research of India, the Department of Science and Technology, India, the Science & Engineering Research Board (SERB), India, the Ministry of Human Resource Development, India, the Spanish Agencia Estatal de Investigación, the Vicepresidència i Conselleria d’Innovació, Recerca i Turisme and the Conselleria d’Educació i Universitat del Govern de les Illes Balears, the Conselleria d’Innovació, Universitats, Ciència i Societat Digital de la Generalitat Valenciana and the CERCA Programme Generalitat de Catalunya, Spain, the National Science Centre of Poland, the Swiss National Science Foundation (SNSF), the Russian Foundation for Basic Research, the Russian Science Foundation, the European Commission, the European Regional Development Funds (ERDF), the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, the Hungarian Scientific Research Fund (OTKA), the French Lyon Institute of Origins (LIO), the Belgian Fonds de la Recherche Scientifique (FRS-FNRS), Actions de Recherche Concertées (ARC) and Fonds Wetenschappelijk Onderzoek–Vlaanderen (FWO), Belgium, the Paris Île-de-France Region, the National Research, Development and Innovation Office Hungary (NKFIH), the National Research Foundation of Korea, Industry Canada and the Province of Ontario through the Ministry of Economic Development and Innovation, the Natural Science and Engineering Research Council Canada, the Canadian Institute for Advanced Research, the Brazilian Ministry of Science, Technology, Innovations, and Communications, the International Center for Theoretical Physics South American Institute for Fundamental Research (ICTP-SAIFR), the Research Grants Council of Hong Kong, the National Natural Science Foundation of China (NSFC), the Leverhulme Trust, the Research Corporation, the Ministry of Science and Technology (MOST), Taiwan and the Kavli Foundation. The authors gratefully acknowledge the support of the NSF, STFC, INFN and CNRS for provision of computational resources. We also thank the anonymous referees for their valuable comments on this paper.
PY - 2020/8/24
Y1 - 2020/8/24
N2 - We report the observation of gravitational waves from a binary-black-hole coalescence during the first two weeks of LIGO's and Virgo's third observing run. The signal was recorded on April 12, 2019 at 05â¶30â¶44 UTC with a network signal-to-noise ratio of 19. The binary is different from observations during the first two observing runs most notably due to its asymmetric masses: A ∼30 M⊙ black hole merged with a ∼8 M⊙ black hole companion. The more massive black hole rotated with a dimensionless spin magnitude between 0.22 and 0.60 (90% probability). Asymmetric systems are predicted to emit gravitational waves with stronger contributions from higher multipoles, and indeed we find strong evidence for gravitational radiation beyond the leading quadrupolar order in the observed signal. A suite of tests performed on GW190412 indicates consistency with Einstein's general theory of relativity. While the mass ratio of this system differs from all previous detections, we show that it is consistent with the population model of stellar binary black holes inferred from the first two observing runs.
AB - We report the observation of gravitational waves from a binary-black-hole coalescence during the first two weeks of LIGO's and Virgo's third observing run. The signal was recorded on April 12, 2019 at 05â¶30â¶44 UTC with a network signal-to-noise ratio of 19. The binary is different from observations during the first two observing runs most notably due to its asymmetric masses: A ∼30 M⊙ black hole merged with a ∼8 M⊙ black hole companion. The more massive black hole rotated with a dimensionless spin magnitude between 0.22 and 0.60 (90% probability). Asymmetric systems are predicted to emit gravitational waves with stronger contributions from higher multipoles, and indeed we find strong evidence for gravitational radiation beyond the leading quadrupolar order in the observed signal. A suite of tests performed on GW190412 indicates consistency with Einstein's general theory of relativity. While the mass ratio of this system differs from all previous detections, we show that it is consistent with the population model of stellar binary black holes inferred from the first two observing runs.
UR - http://www.scopus.com/inward/record.url?scp=85091109691&partnerID=8YFLogxK
U2 - 10.1103/PhysRevD.102.043015
DO - 10.1103/PhysRevD.102.043015
M3 - Article
VL - 102
JO - Physical Review D
JF - Physical Review D
SN - 2470-0010
IS - 4
M1 - 043015
ER -