Details
Original language | English |
---|---|
Article number | 161101 |
Number of pages | 16 |
Journal | Physical review letters |
Volume | 121 |
Issue number | 16 |
Publication status | Published - 15 Oct 2018 |
Abstract
On 17 August 2017, the LIGO and Virgo observatories made the first direct detection of gravitational waves from the coalescence of a neutron star binary system. The detection of this gravitational-wave signal, GW170817, offers a novel opportunity to directly probe the properties of matter at the extreme conditions found in the interior of these stars. The initial, minimal-assumption analysis of the LIGO and Virgo data placed constraints on the tidal effects of the coalescing bodies, which were then translated to constraints on neutron star radii. Here, we expand upon previous analyses by working under the hypothesis that both bodies were neutron stars that are described by the same equation of state and have spins within the range observed in Galactic binary neutron stars. Our analysis employs two methods: the use of equation-of-state-insensitive relations between various macroscopic properties of the neutron stars and the use of an efficient parametrization of the defining function p(ρ) of the equation of state itself. From the LIGO and Virgo data alone and the first method, we measure the two neutron star radii as R_{1}=10.8_{-1.7}^{+2.0} km for the heavier star and R_{2}=10.7_{-1.5}^{+2.1} km for the lighter star at the 90% credible level. If we additionally require that the equation of state supports neutron stars with masses larger than 1.97 M_{⊙} as required from electromagnetic observations and employ the equation-of-state parametrization, we further constrain R_{1}=11.9_{-1.4}^{+1.4} km and R_{2}=11.9_{-1.4}^{+1.4} km at the 90% credible level. Finally, we obtain constraints on p(ρ) at supranuclear densities, with pressure at twice nuclear saturation density measured at 3.5_{-1.7}^{+2.7}×10^{34} dyn cm^{-2} at the 90% level.
ASJC Scopus subject areas
- Physics and Astronomy(all)
- General Physics and Astronomy
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Physical review letters, Vol. 121, No. 16, 161101, 15.10.2018.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - GW170817
T2 - Measurements of Neutron Star Radii and Equation of State
AU - The LIGO Scientific Collaboration
AU - The Virgo Collaboration
AU - Abbott, B. P.
AU - Abbott, R.
AU - Abbott, T. D.
AU - Acernese, F.
AU - Ackley, K.
AU - Adams, C.
AU - Adams, T.
AU - Addesso, P.
AU - Adhikari, R. X.
AU - Adya, Vaishali
AU - Affeldt, Christoph
AU - Agarwal, B.
AU - Agathos, M.
AU - Agatsuma, K.
AU - Aggarwal, N.
AU - Aguiar, O. D.
AU - Aiello, L.
AU - Ain, A.
AU - Ajith, P.
AU - Allen, Bruce
AU - Allen, G.
AU - Bose, S.
AU - Brown, D. D.
AU - Chen, Y.
AU - Cheng, H. P.
AU - Danilishin, Shtefan
AU - Danzmann, Karsten
AU - Hanke, Marcus
AU - Hennig, J.
AU - Heurs, Michele
AU - Hreibi, A.
AU - Kumar, S.
AU - Li, X.
AU - Lück, Harald
AU - Nguyen, T. T.
AU - Schmidt, P.
AU - Steinmeyer, Daniel
AU - Sun, L.
AU - Vahlbruch, Henning Fedor Cornelius
AU - Wang, Y. F.
AU - Wei, Li-Wei
AU - Wilken, Dennis Max
AU - Willke, Benno
AU - Wittel, Holger
AU - Zhang, L.
AU - Zhang, Yin
AU - Zhou, M.
AU - Lee, H. W.
AU - Aufmuth, Peter
AU - Bensch, Maximilian
AU - Bergmann, Gerald
AU - Bisht, Aparna
AU - Bode, Nina
AU - Booker, P.
AU - Brinkmann, Marc
AU - Denker, Timo
AU - de Varona, O.
AU - Doravari, S.
AU - Dreissigacker, C.
AU - Eggenstein, H.-B.
AU - Hochheim, S.
AU - Junker, J.
AU - Karvinen, Kai S.
AU - Kaufer, Stefan
AU - Khan, S.
AU - Kirchhoff, R.
AU - Koch, Patrick
AU - Köhlenbeck, S. M.
AU - Kringel, Volker
AU - Kuehn, G.
AU - Leavey, S.
AU - Lehmann, J.
AU - Leonardi, M.
AU - Lough, James
AU - Mehmet, Moritz
AU - Mendoza-Gandara, D.
AU - Ming, J.
AU - Mukund, Nikhil
AU - Mukherjee, Arunava
AU - Nery, M.
AU - Ohme, F.
AU - Oppermann, P.
AU - Papa, M. A.
AU - Puncken, O.
AU - Rüdiger, A.
AU - Schreiber, Emil
AU - Schulte, B. W.
AU - Schütte, Dirk
AU - Steinke, M.
AU - Steltner, B.
AU - Theeg, Thomas
AU - Thies, Fabian
AU - Weinert, Michael
AU - Wellmann, F.
AU - Weßels, Peter
AU - Wimmer, Maximilian H.
AU - Winkler, W.
AU - Woehler, J.
N1 - Funding information: The authors gratefully acknowledge the support of the U.S. National Science Foundation (NSF) for the construction and operation of the LIGO Laboratory and Advanced LIGO as well as the Science and Technology Facilities Council (STFC) of the United Kingdom, the Max-Planck-Society (MPS), and the State of Niedersachsen/Germany for support of the construction of Advanced LIGO and construction and operation of the GEO600 detector. Additional support for Advanced LIGO was provided by the Australian Research Council. The authors gratefully acknowledge the Italian Istituto Nazionale di Fisica Nucleare (INFN), the French Centre National de la Recherche Scientifique (CNRS) and the Foundation for Fundamental Research on Matter supported by the Netherlands Organisation for Scientific Research, for the construction and operation of the Virgo detector and the creation and support of the EGO consortium. The authors also gratefully acknowledge research support from these agencies as well as by the Council of Scientific and Industrial Research of India, the Department of Science and Technology, India, the Science & Engineering Research Board (SERB), India, the Ministry of Human Resource Development, India, the Spanish Agencia Estatal de Investigación, the Vicepresidència i Conselleria d’Innovació, Recerca i Turisme and the Conselleria d’Educació i Universitat del Govern de les Illes Balears, the Conselleria d’Educació, Investigació, Cultura i Esport de la Generalitat Valenciana, the National Science Centre of Poland, the Swiss National Science Foundation (SNSF), the Russian Foundation for Basic Research, the Russian Science Foundation, the European Commission, the European Regional Development Funds (ERDF), the Royal Society, the Scottish Funding Council, the Scottish Universities Physics Alliance, the Hungarian Scientific Research Fund (OTKA), the Lyon Institute of Origins (LIO), the Paris Île-de-France Region, the National Research, Development and Innovation Office Hungary (NKFI), the National Research Foundation of Korea, Industry Canada and the Province of Ontario through the Ministry of Economic Development and Innovation, the Natural Science and Engineering Research Council Canada, the Canadian Institute for Advanced Research, the Brazilian Ministry of Science, Technology, Innovations, and Communications, the International Center for Theoretical Physics South American Institute for Fundamental Research (ICTP-SAIFR), the Research Grants Council of Hong Kong, the National Natural Science Foundation of China (NSFC), the Leverhulme Trust, the Research Corporation, the Ministry of Science and Technology (MOST), Taiwan and the Kavli Foundation. The authors gratefully acknowledge the support of the NSF, STFC, MPS, INFN, CNRS and the State of Niedersachsen/Germany for provision of computational resources. This article has been assigned the document number LIGO-P1800115. The authors would like to thank N. K. Johnson-McDaniel, W. Kastaun, J. L. Friedman, G. Baym, J. M. Lattimer, L. Rezzolla, M. B. Tsang, and M. C. Miller for their useful comments. This article has been assigned the document number LIGO-P1800115.
PY - 2018/10/15
Y1 - 2018/10/15
N2 - On 17 August 2017, the LIGO and Virgo observatories made the first direct detection of gravitational waves from the coalescence of a neutron star binary system. The detection of this gravitational-wave signal, GW170817, offers a novel opportunity to directly probe the properties of matter at the extreme conditions found in the interior of these stars. The initial, minimal-assumption analysis of the LIGO and Virgo data placed constraints on the tidal effects of the coalescing bodies, which were then translated to constraints on neutron star radii. Here, we expand upon previous analyses by working under the hypothesis that both bodies were neutron stars that are described by the same equation of state and have spins within the range observed in Galactic binary neutron stars. Our analysis employs two methods: the use of equation-of-state-insensitive relations between various macroscopic properties of the neutron stars and the use of an efficient parametrization of the defining function p(ρ) of the equation of state itself. From the LIGO and Virgo data alone and the first method, we measure the two neutron star radii as R_{1}=10.8_{-1.7}^{+2.0} km for the heavier star and R_{2}=10.7_{-1.5}^{+2.1} km for the lighter star at the 90% credible level. If we additionally require that the equation of state supports neutron stars with masses larger than 1.97 M_{⊙} as required from electromagnetic observations and employ the equation-of-state parametrization, we further constrain R_{1}=11.9_{-1.4}^{+1.4} km and R_{2}=11.9_{-1.4}^{+1.4} km at the 90% credible level. Finally, we obtain constraints on p(ρ) at supranuclear densities, with pressure at twice nuclear saturation density measured at 3.5_{-1.7}^{+2.7}×10^{34} dyn cm^{-2} at the 90% level.
AB - On 17 August 2017, the LIGO and Virgo observatories made the first direct detection of gravitational waves from the coalescence of a neutron star binary system. The detection of this gravitational-wave signal, GW170817, offers a novel opportunity to directly probe the properties of matter at the extreme conditions found in the interior of these stars. The initial, minimal-assumption analysis of the LIGO and Virgo data placed constraints on the tidal effects of the coalescing bodies, which were then translated to constraints on neutron star radii. Here, we expand upon previous analyses by working under the hypothesis that both bodies were neutron stars that are described by the same equation of state and have spins within the range observed in Galactic binary neutron stars. Our analysis employs two methods: the use of equation-of-state-insensitive relations between various macroscopic properties of the neutron stars and the use of an efficient parametrization of the defining function p(ρ) of the equation of state itself. From the LIGO and Virgo data alone and the first method, we measure the two neutron star radii as R_{1}=10.8_{-1.7}^{+2.0} km for the heavier star and R_{2}=10.7_{-1.5}^{+2.1} km for the lighter star at the 90% credible level. If we additionally require that the equation of state supports neutron stars with masses larger than 1.97 M_{⊙} as required from electromagnetic observations and employ the equation-of-state parametrization, we further constrain R_{1}=11.9_{-1.4}^{+1.4} km and R_{2}=11.9_{-1.4}^{+1.4} km at the 90% credible level. Finally, we obtain constraints on p(ρ) at supranuclear densities, with pressure at twice nuclear saturation density measured at 3.5_{-1.7}^{+2.7}×10^{34} dyn cm^{-2} at the 90% level.
U2 - 10.1103/PhysRevLett.121.161101
DO - 10.1103/PhysRevLett.121.161101
M3 - Article
C2 - 30387654
AN - SCOPUS:85055099569
VL - 121
JO - Physical review letters
JF - Physical review letters
SN - 0031-9007
IS - 16
M1 - 161101
ER -