Details
Original language | English |
---|---|
Publication status | E-pub ahead of print - 25 Apr 2024 |
Abstract
Keywords
- math.AG, hep-th, math-ph, math.MP
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
2024.
Research output: Working paper/Preprint › Preprint
}
TY - UNPB
T1 - Gromov-Witten Invariants and Mirror Symmetry for Non-Fano Varieties Using Scattering Diagrams
AU - Berglund, Per
AU - Gräfnitz, Tim
AU - Lathwood, Michael
N1 - 40 pages, 19 figures
PY - 2024/4/25
Y1 - 2024/4/25
N2 - Gromov-Witten invariants arise in the topological A-model as counts of worldsheet instantons. On the A-side, these invariants can be computed for a Fano or semi-Fano toric variety using generating functions associated to the toric divisors. On the B-side, the same invariants can be computed from the periods of the mirror. We utilize scattering diagrams (aka wall structures) in the Gross-Siebert mirror symmetry program to extend the calculation of Gromov-Witten invariants to non-Fano toric varieties. Following the work of Carl-Pumperla-Siebert, we compute corrected mirror superpotentials $\vartheta_1(\mathbb{F}_m)$ and their periods for the Hirzebruch surfaces $\mathbb{F}_m$ with $m \ge 2$.
AB - Gromov-Witten invariants arise in the topological A-model as counts of worldsheet instantons. On the A-side, these invariants can be computed for a Fano or semi-Fano toric variety using generating functions associated to the toric divisors. On the B-side, the same invariants can be computed from the periods of the mirror. We utilize scattering diagrams (aka wall structures) in the Gross-Siebert mirror symmetry program to extend the calculation of Gromov-Witten invariants to non-Fano toric varieties. Following the work of Carl-Pumperla-Siebert, we compute corrected mirror superpotentials $\vartheta_1(\mathbb{F}_m)$ and their periods for the Hirzebruch surfaces $\mathbb{F}_m$ with $m \ge 2$.
KW - math.AG
KW - hep-th
KW - math-ph
KW - math.MP
M3 - Preprint
BT - Gromov-Witten Invariants and Mirror Symmetry for Non-Fano Varieties Using Scattering Diagrams
ER -