Details
Original language | English |
---|---|
Pages (from-to) | 4613-4629 |
Number of pages | 17 |
Journal | Journal of Chemical Information and Modeling |
Volume | 64 |
Issue number | 12 |
Early online date | 7 Jun 2024 |
Publication status | Published - 24 Jun 2024 |
Externally published | Yes |
Abstract
Infrared (IR) spectroscopy is an important analytical tool in various chemical and forensic domains and a great deal of effort has gone into developing in silico methods for predicting experimental spectra. A key challenge in this regard is generating highly accurate spectra quickly to enable real-time feedback between computation and experiment. Here, we employ Graphormer, a graph neural network (GNN) transformer, to predict IR spectra using only simplified molecular-input line-entry system (SMILES) strings. Our data set includes 53,528 high-quality spectra, measured in five different experimental media (i.e., phases), for molecules containing the elements H, C, N, O, F, Si, S, P, Cl, Br, and I. When using only atomic numbers for node encodings, Graphormer-IR achieved a mean test spectral information similarity (SISμ) value of 0.8449 ± 0.0012 (n = 5), which surpasses that the current state-of-the-art model Chemprop-IR (SISμ = 0.8409 ± 0.0014, n = 5) with only 36% of the encoded information. Augmenting node embeddings with additional node-level descriptors in learned embeddings generated through a multilayer perceptron improves scores to SISμ = 0.8523 ± 0.0006, a total improvement of 19.7σ (t = 19). These improved scores show how Graphormer-IR excels in capturing long-range interactions like hydrogen bonding, anharmonic peak positions in experimental spectra, and stretching frequencies of uncommon functional groups. Scaling our architecture to 210 attention heads demonstrates specialist-like behavior for distinct IR frequencies that improves model performance. Our model utilizes novel architectures, including a global node for phase encoding, learned node feature embeddings, and a one-dimensional (1D) smoothing convolutional neural network (CNN). Graphormer-IR’s innovations underscore its value over traditional message-passing neural networks (MPNNs) due to its expressive embeddings and ability to capture long-range intramolecular relationships.
ASJC Scopus subject areas
- Chemistry(all)
- General Chemistry
- Chemical Engineering(all)
- General Chemical Engineering
- Computer Science(all)
- Computer Science Applications
- Social Sciences(all)
- Library and Information Sciences
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Journal of Chemical Information and Modeling, Vol. 64, No. 12, 24.06.2024, p. 4613-4629.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Graphormer-IR
T2 - Graph Transformers Predict Experimental IR Spectra Using Highly Specialized Attention
AU - Stienstra, Cailum M.K.
AU - Hebert, Liam
AU - Thomas, Patrick
AU - Haack, Alexander
AU - Guo, Jason
AU - Hopkins, W. Scott
N1 - Publisher Copyright: © 2024 American Chemical Society.
PY - 2024/6/24
Y1 - 2024/6/24
N2 - Infrared (IR) spectroscopy is an important analytical tool in various chemical and forensic domains and a great deal of effort has gone into developing in silico methods for predicting experimental spectra. A key challenge in this regard is generating highly accurate spectra quickly to enable real-time feedback between computation and experiment. Here, we employ Graphormer, a graph neural network (GNN) transformer, to predict IR spectra using only simplified molecular-input line-entry system (SMILES) strings. Our data set includes 53,528 high-quality spectra, measured in five different experimental media (i.e., phases), for molecules containing the elements H, C, N, O, F, Si, S, P, Cl, Br, and I. When using only atomic numbers for node encodings, Graphormer-IR achieved a mean test spectral information similarity (SISμ) value of 0.8449 ± 0.0012 (n = 5), which surpasses that the current state-of-the-art model Chemprop-IR (SISμ = 0.8409 ± 0.0014, n = 5) with only 36% of the encoded information. Augmenting node embeddings with additional node-level descriptors in learned embeddings generated through a multilayer perceptron improves scores to SISμ = 0.8523 ± 0.0006, a total improvement of 19.7σ (t = 19). These improved scores show how Graphormer-IR excels in capturing long-range interactions like hydrogen bonding, anharmonic peak positions in experimental spectra, and stretching frequencies of uncommon functional groups. Scaling our architecture to 210 attention heads demonstrates specialist-like behavior for distinct IR frequencies that improves model performance. Our model utilizes novel architectures, including a global node for phase encoding, learned node feature embeddings, and a one-dimensional (1D) smoothing convolutional neural network (CNN). Graphormer-IR’s innovations underscore its value over traditional message-passing neural networks (MPNNs) due to its expressive embeddings and ability to capture long-range intramolecular relationships.
AB - Infrared (IR) spectroscopy is an important analytical tool in various chemical and forensic domains and a great deal of effort has gone into developing in silico methods for predicting experimental spectra. A key challenge in this regard is generating highly accurate spectra quickly to enable real-time feedback between computation and experiment. Here, we employ Graphormer, a graph neural network (GNN) transformer, to predict IR spectra using only simplified molecular-input line-entry system (SMILES) strings. Our data set includes 53,528 high-quality spectra, measured in five different experimental media (i.e., phases), for molecules containing the elements H, C, N, O, F, Si, S, P, Cl, Br, and I. When using only atomic numbers for node encodings, Graphormer-IR achieved a mean test spectral information similarity (SISμ) value of 0.8449 ± 0.0012 (n = 5), which surpasses that the current state-of-the-art model Chemprop-IR (SISμ = 0.8409 ± 0.0014, n = 5) with only 36% of the encoded information. Augmenting node embeddings with additional node-level descriptors in learned embeddings generated through a multilayer perceptron improves scores to SISμ = 0.8523 ± 0.0006, a total improvement of 19.7σ (t = 19). These improved scores show how Graphormer-IR excels in capturing long-range interactions like hydrogen bonding, anharmonic peak positions in experimental spectra, and stretching frequencies of uncommon functional groups. Scaling our architecture to 210 attention heads demonstrates specialist-like behavior for distinct IR frequencies that improves model performance. Our model utilizes novel architectures, including a global node for phase encoding, learned node feature embeddings, and a one-dimensional (1D) smoothing convolutional neural network (CNN). Graphormer-IR’s innovations underscore its value over traditional message-passing neural networks (MPNNs) due to its expressive embeddings and ability to capture long-range intramolecular relationships.
UR - http://www.scopus.com/inward/record.url?scp=85195536191&partnerID=8YFLogxK
U2 - 10.1021/acs.jcim.4c00378
DO - 10.1021/acs.jcim.4c00378
M3 - Article
C2 - 38845400
AN - SCOPUS:85195536191
VL - 64
SP - 4613
EP - 4629
JO - Journal of Chemical Information and Modeling
JF - Journal of Chemical Information and Modeling
SN - 1549-9596
IS - 12
ER -