Details
Original language | English |
---|---|
Pages (from-to) | 1975-2019 |
Number of pages | 45 |
Journal | Indiana University Mathematics Journal |
Volume | 60 |
Issue number | 6 |
Publication status | Published - 2011 |
Abstract
We prove global existence of a nonnegative weak solution to a degenerate parabolic system, which models the spreading of insoluble surfactant on a thin liquid film.
Keywords
- Degenerate parabolic system, Thin film, Weak solution
ASJC Scopus subject areas
- Mathematics(all)
- General Mathematics
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Indiana University Mathematics Journal, Vol. 60, No. 6, 2011, p. 1975-2019.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Global weak solutions for a degenerate parabolic system modeling the spreading of insoluble surfactant
AU - Escher, Joachim
AU - Hillairet, Matthieu
AU - Laurençot, Philippe
AU - Walker, Christoph
PY - 2011
Y1 - 2011
N2 - We prove global existence of a nonnegative weak solution to a degenerate parabolic system, which models the spreading of insoluble surfactant on a thin liquid film.
AB - We prove global existence of a nonnegative weak solution to a degenerate parabolic system, which models the spreading of insoluble surfactant on a thin liquid film.
KW - Degenerate parabolic system
KW - Thin film
KW - Weak solution
UR - http://www.scopus.com/inward/record.url?scp=84873667401&partnerID=8YFLogxK
U2 - 10.1512/iumj.2011.60.4447
DO - 10.1512/iumj.2011.60.4447
M3 - Article
AN - SCOPUS:84873667401
VL - 60
SP - 1975
EP - 2019
JO - Indiana University Mathematics Journal
JF - Indiana University Mathematics Journal
SN - 0022-2518
IS - 6
ER -