Details
Original language | English |
---|---|
Pages (from-to) | 73-84 |
Number of pages | 12 |
Journal | Journal of Differential Equations |
Volume | 197 |
Issue number | 1 |
Publication status | Published - 9 Aug 2003 |
Abstract
We present an approach for proving the global existence of classical solutions of certain quasilinear parabolic systems with homogeneous Dirichlet boundary conditions in bounded domains with a smooth boundary.
Keywords
- Dirichlet condition, Global solutions, Quasilinear parabolic systems
ASJC Scopus subject areas
- Mathematics(all)
- Analysis
- Mathematics(all)
- Applied Mathematics
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Journal of Differential Equations, Vol. 197, No. 1, 09.08.2003, p. 73-84.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Global solutions for quasilinear parabolic systems
AU - Constantin, Adrian
AU - Escher, Joachim
AU - Yin, Zhaoyang
PY - 2003/8/9
Y1 - 2003/8/9
N2 - We present an approach for proving the global existence of classical solutions of certain quasilinear parabolic systems with homogeneous Dirichlet boundary conditions in bounded domains with a smooth boundary.
AB - We present an approach for proving the global existence of classical solutions of certain quasilinear parabolic systems with homogeneous Dirichlet boundary conditions in bounded domains with a smooth boundary.
KW - Dirichlet condition
KW - Global solutions
KW - Quasilinear parabolic systems
UR - http://www.scopus.com/inward/record.url?scp=1042279865&partnerID=8YFLogxK
U2 - 10.1016/S0022-0396(03)00165-7
DO - 10.1016/S0022-0396(03)00165-7
M3 - Article
AN - SCOPUS:1042279865
VL - 197
SP - 73
EP - 84
JO - Journal of Differential Equations
JF - Journal of Differential Equations
SN - 0022-0396
IS - 1
ER -