Details
Original language | English |
---|---|
Pages (from-to) | 1694-1713 |
Number of pages | 20 |
Journal | SIAM Journal on Mathematical Analysis |
Volume | 38 |
Issue number | 5 |
Publication status | Published - 2006 |
Externally published | Yes |
Abstract
A system of nonlinear partial differential equations modeling haptotaxis is investigated. The model arises in cell migration processes involved in tumor invasion. The existence of unique global classical solutions is proved.
Keywords
- Classical solutions, Diffusion, Global existence, Haptotaxis, Uniqueness
ASJC Scopus subject areas
- Mathematics(all)
- Analysis
- Mathematics(all)
- Computational Mathematics
- Mathematics(all)
- Applied Mathematics
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: SIAM Journal on Mathematical Analysis, Vol. 38, No. 5, 2006, p. 1694-1713.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Global existence of classical solutions for a haptotaxis model
AU - Walker, Christoph
AU - Webb, Glenn F.
N1 - Copyright: Copyright 2008 Elsevier B.V., All rights reserved.
PY - 2006
Y1 - 2006
N2 - A system of nonlinear partial differential equations modeling haptotaxis is investigated. The model arises in cell migration processes involved in tumor invasion. The existence of unique global classical solutions is proved.
AB - A system of nonlinear partial differential equations modeling haptotaxis is investigated. The model arises in cell migration processes involved in tumor invasion. The existence of unique global classical solutions is proved.
KW - Classical solutions
KW - Diffusion
KW - Global existence
KW - Haptotaxis
KW - Uniqueness
UR - http://www.scopus.com/inward/record.url?scp=34548693955&partnerID=8YFLogxK
U2 - 10.1137/060655122
DO - 10.1137/060655122
M3 - Article
AN - SCOPUS:34548693955
VL - 38
SP - 1694
EP - 1713
JO - SIAM Journal on Mathematical Analysis
JF - SIAM Journal on Mathematical Analysis
SN - 0036-1410
IS - 5
ER -