Loading [MathJax]/extensions/tex2jax.js

Geodesic completeness for Sobolev H s-metrics on the diffeomorphism group of the circle

Research output: Contribution to journalArticleResearchpeer review

Authors

Research Organisations

External Research Organisations

  • Universite d'Aix-Marseille

Details

Original languageEnglish
Pages (from-to)949-968
Number of pages20
JournalJournal of Evolution Equations
Volume14
Issue number4-5
Early online date11 Jul 2014
Publication statusPublished - Dec 2014

Abstract

We prove that the weak Riemannian metric induced by the fractional Sobolev norm Hs on the diffeomorphism group of the circle is geodesically complete, provided that s > 3/2.

Keywords

    35Q53, 58D05

ASJC Scopus subject areas

Cite this

Geodesic completeness for Sobolev H s-metrics on the diffeomorphism group of the circle. / Escher, Joachim; Kolev, Boris.
In: Journal of Evolution Equations, Vol. 14, No. 4-5, 12.2014, p. 949-968.

Research output: Contribution to journalArticleResearchpeer review

Escher J, Kolev B. Geodesic completeness for Sobolev H s-metrics on the diffeomorphism group of the circle. Journal of Evolution Equations. 2014 Dec;14(4-5):949-968. Epub 2014 Jul 11. doi: 10.1007/s00028-014-0245-3
Download
@article{66486835237642c3b415e900c9ac07cd,
title = "Geodesic completeness for Sobolev H s-metrics on the diffeomorphism group of the circle",
abstract = "We prove that the weak Riemannian metric induced by the fractional Sobolev norm Hs on the diffeomorphism group of the circle is geodesically complete, provided that s > 3/2.",
keywords = "35Q53, 58D05",
author = "Joachim Escher and Boris Kolev",
note = "Publisher Copyright: {\textcopyright} 2014, Springer Basel. Copyright: Copyright 2021 Elsevier B.V., All rights reserved.",
year = "2014",
month = dec,
doi = "10.1007/s00028-014-0245-3",
language = "English",
volume = "14",
pages = "949--968",
journal = "Journal of Evolution Equations",
issn = "1424-3199",
publisher = "Birkhauser Verlag Basel",
number = "4-5",

}

Download

TY - JOUR

T1 - Geodesic completeness for Sobolev H s-metrics on the diffeomorphism group of the circle

AU - Escher, Joachim

AU - Kolev, Boris

N1 - Publisher Copyright: © 2014, Springer Basel. Copyright: Copyright 2021 Elsevier B.V., All rights reserved.

PY - 2014/12

Y1 - 2014/12

N2 - We prove that the weak Riemannian metric induced by the fractional Sobolev norm Hs on the diffeomorphism group of the circle is geodesically complete, provided that s > 3/2.

AB - We prove that the weak Riemannian metric induced by the fractional Sobolev norm Hs on the diffeomorphism group of the circle is geodesically complete, provided that s > 3/2.

KW - 35Q53

KW - 58D05

UR - http://www.scopus.com/inward/record.url?scp=84939897000&partnerID=8YFLogxK

U2 - 10.1007/s00028-014-0245-3

DO - 10.1007/s00028-014-0245-3

M3 - Article

AN - SCOPUS:84939897000

VL - 14

SP - 949

EP - 968

JO - Journal of Evolution Equations

JF - Journal of Evolution Equations

SN - 1424-3199

IS - 4-5

ER -

By the same author(s)