Details
Original language | English |
---|---|
Pages (from-to) | 811-822 |
Number of pages | 12 |
Journal | Acta Geochimica |
Volume | 41 |
Issue number | 5 |
Early online date | 4 Aug 2022 |
Publication status | Published - Oct 2022 |
Abstract
Desert rhizoliths are generally found as weathered, broken and scattered samples on dune field surface, but rarely in-situ in their initial states buried under the soil of desert in the Badain Jaran Desert, northwest China. This study offers an assessment of the morphological, mineralogical, and chemical properties of intact and in-situ rhizoliths found in soils of swales and depressions among dune chains. The characteristics of these rare and precious objects were assessed using optical polarizing microscopy, cathodoluminescence, scanning electronic microscopy, radiocarbon dating, and stable isotopic analyses, providing the opportunity for discussion of the rhizolith formation mechanisms and associated environmental conditions. Field and laboratory investigations showed that the in-situ intact rhizoliths were formed only in the places where Artemisia shrubs are living, and the remaining root relicts within rhizoliths belong to this species. The spatial distribution of rhizoliths also suggested that low topographic positions on a landscape provided soil moisture, and redox environments favored rhizolith formation. A semi-closed redox environment in the subsoil at swales and depressions, where water is always present, along with the sandy soil texture, facilitated fast water percolation to deeper depths and condensation. Such a soil environment not only provides water for Artemisia growth, but also for the weathering of minerals such as felspars and calcite from primary carbonates, and for the decomposition of root relicts. Furthermore, harsh climatic conditions, such as strong winds and solar radiation, led to water evaporation through dead root channels and triggered the calcification along the root relicts. The entrapped lithogenic carbonates and to a lesser extent the decomposition of Artemisia roots provided the carbon sources for the rhizoliths formation, while the weathering of soil minerals, particularly feldspars and carbonates, was the main source of Ca. Rhizoliths in the Badain Jaran desert formed relatively quickly, probably over a few soil drying episodes. This led to the entrapment of a large quantity of lithogenic carbonates (more than 90% of carbon) within rhizolith cement. The re-dissolution of the entrapped lithogenic carbonates in rhizolith tubes should be taken into account in the paleoenvironmental interpretation of 14C ages, the latter suggesting that rhizoliths formed during the Holocene (~ 2053 years cal BP, based on root organic relicts).
Keywords
- Artemisia roots, Calcification, Decomposition, Leptic regosols, Rhizoliths, Soil moisture
ASJC Scopus subject areas
- Earth and Planetary Sciences(all)
- Geochemistry and Petrology
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Acta Geochimica, Vol. 41, No. 5, 10.2022, p. 811-822.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Genesis and soil environmental implications of intact in-situ rhizoliths in dunes of the Badain Jaran Desert, northwestern China
AU - Sun, Qingfeng
AU - Zamanian, Kazem
AU - Huguet, Arnaud
AU - Bayat, Omid
AU - Wang, Hong
AU - Badawy, Hanan S.
N1 - Funding Information: We highly appreciate the constructive comments from Professor Zhuolun Li. We give our thanks to Professor Ping Ding for radiocarbon dating and isotopic work, Pu Wang and Shiming Zhang for their petrographic and mineralogical work; Wenhui Xue and Wentao Pei for their assistance during field exploration. The authors also acknowledge Professor Eric Verrecchia, Professor Xin Wang, Professor Yinglong Chen, Professor Zhiqiang Lei, and Dr. Keyu Fa for their comments. The research was supported by the Natural Science Foundation of China (41561046), Chinese-German Centre (Sino-German Mobility M-0069) and the German Research Foundation (DFG) (ZA 1068/4-1).
PY - 2022/10
Y1 - 2022/10
N2 - Desert rhizoliths are generally found as weathered, broken and scattered samples on dune field surface, but rarely in-situ in their initial states buried under the soil of desert in the Badain Jaran Desert, northwest China. This study offers an assessment of the morphological, mineralogical, and chemical properties of intact and in-situ rhizoliths found in soils of swales and depressions among dune chains. The characteristics of these rare and precious objects were assessed using optical polarizing microscopy, cathodoluminescence, scanning electronic microscopy, radiocarbon dating, and stable isotopic analyses, providing the opportunity for discussion of the rhizolith formation mechanisms and associated environmental conditions. Field and laboratory investigations showed that the in-situ intact rhizoliths were formed only in the places where Artemisia shrubs are living, and the remaining root relicts within rhizoliths belong to this species. The spatial distribution of rhizoliths also suggested that low topographic positions on a landscape provided soil moisture, and redox environments favored rhizolith formation. A semi-closed redox environment in the subsoil at swales and depressions, where water is always present, along with the sandy soil texture, facilitated fast water percolation to deeper depths and condensation. Such a soil environment not only provides water for Artemisia growth, but also for the weathering of minerals such as felspars and calcite from primary carbonates, and for the decomposition of root relicts. Furthermore, harsh climatic conditions, such as strong winds and solar radiation, led to water evaporation through dead root channels and triggered the calcification along the root relicts. The entrapped lithogenic carbonates and to a lesser extent the decomposition of Artemisia roots provided the carbon sources for the rhizoliths formation, while the weathering of soil minerals, particularly feldspars and carbonates, was the main source of Ca. Rhizoliths in the Badain Jaran desert formed relatively quickly, probably over a few soil drying episodes. This led to the entrapment of a large quantity of lithogenic carbonates (more than 90% of carbon) within rhizolith cement. The re-dissolution of the entrapped lithogenic carbonates in rhizolith tubes should be taken into account in the paleoenvironmental interpretation of 14C ages, the latter suggesting that rhizoliths formed during the Holocene (~ 2053 years cal BP, based on root organic relicts).
AB - Desert rhizoliths are generally found as weathered, broken and scattered samples on dune field surface, but rarely in-situ in their initial states buried under the soil of desert in the Badain Jaran Desert, northwest China. This study offers an assessment of the morphological, mineralogical, and chemical properties of intact and in-situ rhizoliths found in soils of swales and depressions among dune chains. The characteristics of these rare and precious objects were assessed using optical polarizing microscopy, cathodoluminescence, scanning electronic microscopy, radiocarbon dating, and stable isotopic analyses, providing the opportunity for discussion of the rhizolith formation mechanisms and associated environmental conditions. Field and laboratory investigations showed that the in-situ intact rhizoliths were formed only in the places where Artemisia shrubs are living, and the remaining root relicts within rhizoliths belong to this species. The spatial distribution of rhizoliths also suggested that low topographic positions on a landscape provided soil moisture, and redox environments favored rhizolith formation. A semi-closed redox environment in the subsoil at swales and depressions, where water is always present, along with the sandy soil texture, facilitated fast water percolation to deeper depths and condensation. Such a soil environment not only provides water for Artemisia growth, but also for the weathering of minerals such as felspars and calcite from primary carbonates, and for the decomposition of root relicts. Furthermore, harsh climatic conditions, such as strong winds and solar radiation, led to water evaporation through dead root channels and triggered the calcification along the root relicts. The entrapped lithogenic carbonates and to a lesser extent the decomposition of Artemisia roots provided the carbon sources for the rhizoliths formation, while the weathering of soil minerals, particularly feldspars and carbonates, was the main source of Ca. Rhizoliths in the Badain Jaran desert formed relatively quickly, probably over a few soil drying episodes. This led to the entrapment of a large quantity of lithogenic carbonates (more than 90% of carbon) within rhizolith cement. The re-dissolution of the entrapped lithogenic carbonates in rhizolith tubes should be taken into account in the paleoenvironmental interpretation of 14C ages, the latter suggesting that rhizoliths formed during the Holocene (~ 2053 years cal BP, based on root organic relicts).
KW - Artemisia roots
KW - Calcification
KW - Decomposition
KW - Leptic regosols
KW - Rhizoliths
KW - Soil moisture
UR - http://www.scopus.com/inward/record.url?scp=85135584562&partnerID=8YFLogxK
U2 - 10.1007/s11631-022-00543-0
DO - 10.1007/s11631-022-00543-0
M3 - Article
AN - SCOPUS:85135584562
VL - 41
SP - 811
EP - 822
JO - Acta Geochimica
JF - Acta Geochimica
SN - 2096-0956
IS - 5
ER -