Galois Representations and Algebraic Equations

Research output: Chapter in book/report/conference proceedingContribution to book/anthologyResearchpeer review

Authors

Research Organisations

External Research Organisations

  • Rikkyo University
View graph of relations

Details

Original languageEnglish
Title of host publicationMordell–Weil Lattices
PublisherSpringer Singapore
Pages191-228
Number of pages38
ISBN (electronic)978-981-32-9301-4
ISBN (print)978-981-32-9300-7, 978-981-32-9303-8
Publication statusPublished - 17 Oct 2019

Publication series

NameErgebnisse der Mathematik und ihrer Grenzgebiete - 3. Folge / A Series of Modern Surveys in Mathematics
Volume70
ISSN (Print)0071-1136
ISSN (electronic)2197-5655

Abstract

In this and the next chapter, we discuss Galois representations and algebraic equations which arise naturally from Mordell–Weil lattices. The notion of excellent families in the additive setting to describe a common deep connection between Mordell–Weil lattices of rational elliptic surfaces, algebraic equations and invariant theory of Weyl groups.

ASJC Scopus subject areas

Cite this

Galois Representations and Algebraic Equations. / Schütt, Matthias; Shioda, Tetsuji.
Mordell–Weil Lattices . Springer Singapore, 2019. p. 191-228 (Ergebnisse der Mathematik und ihrer Grenzgebiete - 3. Folge / A Series of Modern Surveys in Mathematics; Vol. 70).

Research output: Chapter in book/report/conference proceedingContribution to book/anthologyResearchpeer review

Schütt, M & Shioda, T 2019, Galois Representations and Algebraic Equations. in Mordell–Weil Lattices . Ergebnisse der Mathematik und ihrer Grenzgebiete - 3. Folge / A Series of Modern Surveys in Mathematics, vol. 70, Springer Singapore, pp. 191-228. https://doi.org/10.1007/978-981-32-9301-4_9
Schütt, M., & Shioda, T. (2019). Galois Representations and Algebraic Equations. In Mordell–Weil Lattices (pp. 191-228). (Ergebnisse der Mathematik und ihrer Grenzgebiete - 3. Folge / A Series of Modern Surveys in Mathematics; Vol. 70). Springer Singapore. https://doi.org/10.1007/978-981-32-9301-4_9
Schütt M, Shioda T. Galois Representations and Algebraic Equations. In Mordell–Weil Lattices . Springer Singapore. 2019. p. 191-228. (Ergebnisse der Mathematik und ihrer Grenzgebiete - 3. Folge / A Series of Modern Surveys in Mathematics). doi: 10.1007/978-981-32-9301-4_9
Schütt, Matthias ; Shioda, Tetsuji. / Galois Representations and Algebraic Equations. Mordell–Weil Lattices . Springer Singapore, 2019. pp. 191-228 (Ergebnisse der Mathematik und ihrer Grenzgebiete - 3. Folge / A Series of Modern Surveys in Mathematics).
Download
@inbook{6405beb31aa14750aeaf6c16c95fcda1,
title = "Galois Representations and Algebraic Equations",
abstract = "In this and the next chapter, we discuss Galois representations and algebraic equations which arise naturally from Mordell–Weil lattices. The notion of excellent families in the additive setting to describe a common deep connection between Mordell–Weil lattices of rational elliptic surfaces, algebraic equations and invariant theory of Weyl groups.",
author = "Matthias Sch{\"u}tt and Tetsuji Shioda",
year = "2019",
month = oct,
day = "17",
doi = "10.1007/978-981-32-9301-4_9",
language = "English",
isbn = "978-981-32-9300-7",
series = "Ergebnisse der Mathematik und ihrer Grenzgebiete - 3. Folge / A Series of Modern Surveys in Mathematics",
publisher = "Springer Singapore",
pages = "191--228",
booktitle = "Mordell–Weil Lattices",
address = "Singapore",

}

Download

TY - CHAP

T1 - Galois Representations and Algebraic Equations

AU - Schütt, Matthias

AU - Shioda, Tetsuji

PY - 2019/10/17

Y1 - 2019/10/17

N2 - In this and the next chapter, we discuss Galois representations and algebraic equations which arise naturally from Mordell–Weil lattices. The notion of excellent families in the additive setting to describe a common deep connection between Mordell–Weil lattices of rational elliptic surfaces, algebraic equations and invariant theory of Weyl groups.

AB - In this and the next chapter, we discuss Galois representations and algebraic equations which arise naturally from Mordell–Weil lattices. The notion of excellent families in the additive setting to describe a common deep connection between Mordell–Weil lattices of rational elliptic surfaces, algebraic equations and invariant theory of Weyl groups.

UR - http://www.scopus.com/inward/record.url?scp=85074660986&partnerID=8YFLogxK

U2 - 10.1007/978-981-32-9301-4_9

DO - 10.1007/978-981-32-9301-4_9

M3 - Contribution to book/anthology

AN - SCOPUS:85074660986

SN - 978-981-32-9300-7

SN - 978-981-32-9303-8

T3 - Ergebnisse der Mathematik und ihrer Grenzgebiete - 3. Folge / A Series of Modern Surveys in Mathematics

SP - 191

EP - 228

BT - Mordell–Weil Lattices

PB - Springer Singapore

ER -

By the same author(s)