Details
Original language | English |
---|---|
Pages (from-to) | 251-267 |
Number of pages | 17 |
Journal | Journal of algebra |
Volume | 311 |
Issue number | 1 |
Publication status | Published - 1 May 2007 |
Externally published | Yes |
Abstract
We prove that the Fourier matrices for the imprimitive complex reflection groups introduced by Malle in [Gunter Malle, Unipotente Grade imprimitiver komplexer Spiegelungsgruppen, J. Algebra 177 (3) (1995) 768-826] define fusion algebras with not necessarily positive but integer structure constants. Hence they define Z-algebras. As a result, we obtain that all known Fourier matrices belonging to spetses define algebras with integer structure constants.
Keywords
- Complex reflection groups, Fourier matrix, Representation theory of finite groups, Table algebras
ASJC Scopus subject areas
- Mathematics(all)
- Algebra and Number Theory
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Journal of algebra, Vol. 311, No. 1, 01.05.2007, p. 251-267.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Fusion algebras for imprimitive complex reflection groups
AU - Cuntz, Michael
PY - 2007/5/1
Y1 - 2007/5/1
N2 - We prove that the Fourier matrices for the imprimitive complex reflection groups introduced by Malle in [Gunter Malle, Unipotente Grade imprimitiver komplexer Spiegelungsgruppen, J. Algebra 177 (3) (1995) 768-826] define fusion algebras with not necessarily positive but integer structure constants. Hence they define Z-algebras. As a result, we obtain that all known Fourier matrices belonging to spetses define algebras with integer structure constants.
AB - We prove that the Fourier matrices for the imprimitive complex reflection groups introduced by Malle in [Gunter Malle, Unipotente Grade imprimitiver komplexer Spiegelungsgruppen, J. Algebra 177 (3) (1995) 768-826] define fusion algebras with not necessarily positive but integer structure constants. Hence they define Z-algebras. As a result, we obtain that all known Fourier matrices belonging to spetses define algebras with integer structure constants.
KW - Complex reflection groups
KW - Fourier matrix
KW - Representation theory of finite groups
KW - Table algebras
UR - http://www.scopus.com/inward/record.url?scp=33947306427&partnerID=8YFLogxK
U2 - 10.1016/j.jalgebra.2006.10.027
DO - 10.1016/j.jalgebra.2006.10.027
M3 - Article
AN - SCOPUS:33947306427
VL - 311
SP - 251
EP - 267
JO - Journal of algebra
JF - Journal of algebra
SN - 0021-8693
IS - 1
ER -