Fusion algebras for imprimitive complex reflection groups

Research output: Contribution to journalArticleResearchpeer review

Authors

External Research Organisations

  • University of Kaiserslautern
View graph of relations

Details

Original languageEnglish
Pages (from-to)251-267
Number of pages17
JournalJournal of algebra
Volume311
Issue number1
Publication statusPublished - 1 May 2007
Externally publishedYes

Abstract

We prove that the Fourier matrices for the imprimitive complex reflection groups introduced by Malle in [Gunter Malle, Unipotente Grade imprimitiver komplexer Spiegelungsgruppen, J. Algebra 177 (3) (1995) 768-826] define fusion algebras with not necessarily positive but integer structure constants. Hence they define Z-algebras. As a result, we obtain that all known Fourier matrices belonging to spetses define algebras with integer structure constants.

Keywords

    Complex reflection groups, Fourier matrix, Representation theory of finite groups, Table algebras

ASJC Scopus subject areas

Cite this

Fusion algebras for imprimitive complex reflection groups. / Cuntz, Michael.
In: Journal of algebra, Vol. 311, No. 1, 01.05.2007, p. 251-267.

Research output: Contribution to journalArticleResearchpeer review

Cuntz M. Fusion algebras for imprimitive complex reflection groups. Journal of algebra. 2007 May 1;311(1):251-267. doi: 10.1016/j.jalgebra.2006.10.027
Download
@article{47871ef4fed341ae94489c91e8a2433c,
title = "Fusion algebras for imprimitive complex reflection groups",
abstract = "We prove that the Fourier matrices for the imprimitive complex reflection groups introduced by Malle in [Gunter Malle, Unipotente Grade imprimitiver komplexer Spiegelungsgruppen, J. Algebra 177 (3) (1995) 768-826] define fusion algebras with not necessarily positive but integer structure constants. Hence they define Z-algebras. As a result, we obtain that all known Fourier matrices belonging to spetses define algebras with integer structure constants.",
keywords = "Complex reflection groups, Fourier matrix, Representation theory of finite groups, Table algebras",
author = "Michael Cuntz",
year = "2007",
month = may,
day = "1",
doi = "10.1016/j.jalgebra.2006.10.027",
language = "English",
volume = "311",
pages = "251--267",
journal = "Journal of algebra",
issn = "0021-8693",
publisher = "Academic Press Inc.",
number = "1",

}

Download

TY - JOUR

T1 - Fusion algebras for imprimitive complex reflection groups

AU - Cuntz, Michael

PY - 2007/5/1

Y1 - 2007/5/1

N2 - We prove that the Fourier matrices for the imprimitive complex reflection groups introduced by Malle in [Gunter Malle, Unipotente Grade imprimitiver komplexer Spiegelungsgruppen, J. Algebra 177 (3) (1995) 768-826] define fusion algebras with not necessarily positive but integer structure constants. Hence they define Z-algebras. As a result, we obtain that all known Fourier matrices belonging to spetses define algebras with integer structure constants.

AB - We prove that the Fourier matrices for the imprimitive complex reflection groups introduced by Malle in [Gunter Malle, Unipotente Grade imprimitiver komplexer Spiegelungsgruppen, J. Algebra 177 (3) (1995) 768-826] define fusion algebras with not necessarily positive but integer structure constants. Hence they define Z-algebras. As a result, we obtain that all known Fourier matrices belonging to spetses define algebras with integer structure constants.

KW - Complex reflection groups

KW - Fourier matrix

KW - Representation theory of finite groups

KW - Table algebras

UR - http://www.scopus.com/inward/record.url?scp=33947306427&partnerID=8YFLogxK

U2 - 10.1016/j.jalgebra.2006.10.027

DO - 10.1016/j.jalgebra.2006.10.027

M3 - Article

AN - SCOPUS:33947306427

VL - 311

SP - 251

EP - 267

JO - Journal of algebra

JF - Journal of algebra

SN - 0021-8693

IS - 1

ER -

By the same author(s)