Details
Original language | English |
---|---|
Pages (from-to) | 10-27 |
Number of pages | 18 |
Journal | Molecular microbiology |
Volume | 92 |
Issue number | 1 |
Publication status | Published - Apr 2014 |
Abstract
Fungal Wor1-like proteins are conserved transcriptional regulators that are reported to regulate the virulence of several plant pathogenic fungi by affecting the expression of virulence genes. Here, we report the functional analysis of CfWor1, the homologue of Wor1 in Cladosporium fulvum. Δcfwor1 mutants produce sclerotium-like structures and rough hyphae, which are covered with a black extracellular matrix. These mutants do not sporulate and are no longer virulent on tomato. A CE.CfWor1 transformant that constitutively expresses CfWor1 produces fewer spores with altered morphology and is also reduced in virulence. RNA-seq and RT-qrtPCR analyses suggest that reduced virulence of Δcfwor1 mutants is due to global downregulation of transcription, translation and mitochondrial respiratory chain. The reduced virulence of the CE.CfWor1 transformant is likely due to downregulation of effector genes. Complementation of a non-virulent Δfosge1 (Wor1-homologue) mutant of Fusarium oxysporum f. sp. lycopersici with CfWor1 restored expression of the SIX effector genes in this fungus, but not its virulence. Chimeric proteins of CfWor1/FoSge1 also only partially restored defects of the Δfosge1 mutant, suggesting that these transcriptional regulators have functionally diverged. Altogether, our results suggest that CfWor1 primarily regulates development of C.fulvum, which indirectly affects the expression of a subset of virulence genes.
ASJC Scopus subject areas
- Immunology and Microbiology(all)
- Microbiology
- Biochemistry, Genetics and Molecular Biology(all)
- Molecular Biology
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Molecular microbiology, Vol. 92, No. 1, 04.2014, p. 10-27.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Functional analysis of the conserved transcriptional regulator CfWor1 in Cladosporium fulvum reveals diverse roles in the virulence of plant pathogenic fungi
AU - Ökmen, Bilal
AU - Collemare, Jérôme
AU - Griffiths, Scott
AU - Van Der Burgt, Ate
AU - Cox, Russell
AU - De Wit, Pierre J.G.M.
PY - 2014/4
Y1 - 2014/4
N2 - Fungal Wor1-like proteins are conserved transcriptional regulators that are reported to regulate the virulence of several plant pathogenic fungi by affecting the expression of virulence genes. Here, we report the functional analysis of CfWor1, the homologue of Wor1 in Cladosporium fulvum. Δcfwor1 mutants produce sclerotium-like structures and rough hyphae, which are covered with a black extracellular matrix. These mutants do not sporulate and are no longer virulent on tomato. A CE.CfWor1 transformant that constitutively expresses CfWor1 produces fewer spores with altered morphology and is also reduced in virulence. RNA-seq and RT-qrtPCR analyses suggest that reduced virulence of Δcfwor1 mutants is due to global downregulation of transcription, translation and mitochondrial respiratory chain. The reduced virulence of the CE.CfWor1 transformant is likely due to downregulation of effector genes. Complementation of a non-virulent Δfosge1 (Wor1-homologue) mutant of Fusarium oxysporum f. sp. lycopersici with CfWor1 restored expression of the SIX effector genes in this fungus, but not its virulence. Chimeric proteins of CfWor1/FoSge1 also only partially restored defects of the Δfosge1 mutant, suggesting that these transcriptional regulators have functionally diverged. Altogether, our results suggest that CfWor1 primarily regulates development of C.fulvum, which indirectly affects the expression of a subset of virulence genes.
AB - Fungal Wor1-like proteins are conserved transcriptional regulators that are reported to regulate the virulence of several plant pathogenic fungi by affecting the expression of virulence genes. Here, we report the functional analysis of CfWor1, the homologue of Wor1 in Cladosporium fulvum. Δcfwor1 mutants produce sclerotium-like structures and rough hyphae, which are covered with a black extracellular matrix. These mutants do not sporulate and are no longer virulent on tomato. A CE.CfWor1 transformant that constitutively expresses CfWor1 produces fewer spores with altered morphology and is also reduced in virulence. RNA-seq and RT-qrtPCR analyses suggest that reduced virulence of Δcfwor1 mutants is due to global downregulation of transcription, translation and mitochondrial respiratory chain. The reduced virulence of the CE.CfWor1 transformant is likely due to downregulation of effector genes. Complementation of a non-virulent Δfosge1 (Wor1-homologue) mutant of Fusarium oxysporum f. sp. lycopersici with CfWor1 restored expression of the SIX effector genes in this fungus, but not its virulence. Chimeric proteins of CfWor1/FoSge1 also only partially restored defects of the Δfosge1 mutant, suggesting that these transcriptional regulators have functionally diverged. Altogether, our results suggest that CfWor1 primarily regulates development of C.fulvum, which indirectly affects the expression of a subset of virulence genes.
UR - http://www.scopus.com/inward/record.url?scp=84897112394&partnerID=8YFLogxK
U2 - 10.1111/mmi.12535
DO - 10.1111/mmi.12535
M3 - Article
C2 - 24521437
AN - SCOPUS:84897112394
VL - 92
SP - 10
EP - 27
JO - Molecular microbiology
JF - Molecular microbiology
SN - 0950-382X
IS - 1
ER -