Details
Original language | English |
---|---|
Pages (from-to) | 3313-3320 |
Number of pages | 8 |
Journal | Journal of Physical Chemistry A |
Volume | 111 |
Issue number | 17 |
Early online date | 7 Apr 2007 |
Publication status | Published - 1 May 2007 |
Abstract
In the present work, we spatially extended a brand new kinetic mechanism of the NO + NH3 reaction on Pt{100} to simulate the experimentally observed spatiotemporal traveling waves. The kinetic mechanism developed by Irurzun, Mola, and Imbihl (IMI model) improves the former model developed by Lombarde, Fink, and Imbihl (LFI model) by replacing several elementary steps to take into account experimental evidence published since the LFI model appeared. The IMI model achieves a better agreement with the experimentally observed dependence of the oscillation period on temperature. In the present work, the IMI model is extended by considering Fickean diffusion and coupling via the gas phase. Traveling waves propagating across the surface are obtained at realistic values of temperature and partial pressure. A transition from amplitude to phase waves is observed, induced either by temperature or by the gas global coupling strength. The traveling waves simulated in the present work are not associated with fixed defects, in agreement with experimental evidence of spiral centers capable of moving on the surface. Also, the IMI model adequately predicts the presence of macroscopic oscillations in the partial pressures of the reactants coexisting with front wave patterns on the surface.
ASJC Scopus subject areas
- Chemistry(all)
- Physical and Theoretical Chemistry
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Journal of Physical Chemistry A, Vol. 111, No. 17, 01.05.2007, p. 3313-3320.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Front waves in the NO + NH3 reaction on Pt{100}
AU - Irurzun, I. M.
AU - Mola, E. E.
AU - Imbihl, R.
PY - 2007/5/1
Y1 - 2007/5/1
N2 - In the present work, we spatially extended a brand new kinetic mechanism of the NO + NH3 reaction on Pt{100} to simulate the experimentally observed spatiotemporal traveling waves. The kinetic mechanism developed by Irurzun, Mola, and Imbihl (IMI model) improves the former model developed by Lombarde, Fink, and Imbihl (LFI model) by replacing several elementary steps to take into account experimental evidence published since the LFI model appeared. The IMI model achieves a better agreement with the experimentally observed dependence of the oscillation period on temperature. In the present work, the IMI model is extended by considering Fickean diffusion and coupling via the gas phase. Traveling waves propagating across the surface are obtained at realistic values of temperature and partial pressure. A transition from amplitude to phase waves is observed, induced either by temperature or by the gas global coupling strength. The traveling waves simulated in the present work are not associated with fixed defects, in agreement with experimental evidence of spiral centers capable of moving on the surface. Also, the IMI model adequately predicts the presence of macroscopic oscillations in the partial pressures of the reactants coexisting with front wave patterns on the surface.
AB - In the present work, we spatially extended a brand new kinetic mechanism of the NO + NH3 reaction on Pt{100} to simulate the experimentally observed spatiotemporal traveling waves. The kinetic mechanism developed by Irurzun, Mola, and Imbihl (IMI model) improves the former model developed by Lombarde, Fink, and Imbihl (LFI model) by replacing several elementary steps to take into account experimental evidence published since the LFI model appeared. The IMI model achieves a better agreement with the experimentally observed dependence of the oscillation period on temperature. In the present work, the IMI model is extended by considering Fickean diffusion and coupling via the gas phase. Traveling waves propagating across the surface are obtained at realistic values of temperature and partial pressure. A transition from amplitude to phase waves is observed, induced either by temperature or by the gas global coupling strength. The traveling waves simulated in the present work are not associated with fixed defects, in agreement with experimental evidence of spiral centers capable of moving on the surface. Also, the IMI model adequately predicts the presence of macroscopic oscillations in the partial pressures of the reactants coexisting with front wave patterns on the surface.
UR - http://www.scopus.com/inward/record.url?scp=34249012311&partnerID=8YFLogxK
U2 - 10.1021/jp0689666
DO - 10.1021/jp0689666
M3 - Article
AN - SCOPUS:34249012311
VL - 111
SP - 3313
EP - 3320
JO - Journal of Physical Chemistry A
JF - Journal of Physical Chemistry A
SN - 1089-5639
IS - 17
ER -