Details
Original language | English |
---|---|
Article number | 031105 |
Journal | ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering |
Volume | 9 |
Issue number | 3 |
Early online date | 4 Aug 2023 |
Publication status | Published - Sept 2023 |
Abstract
Reliability-based design has been a widely used methodology in the design of engineering structures. For example, the structural design standards in many countries have adopted the load and resistance factor design (LRFD) method. In recent years, the concept of resilience-based design has emerged, which additionally takes into account the posthazard functionality loss and recovery process of a structure. Under this context, the following questions naturally arise: can we establish a linkage between reliability-based design and resilience-based design? Does there exist a simple resilience-based design criterion that takes a similar form of LRFD? This paper addresses these questions, and the answer is "yes". To this end, a new concept of structural resilience capacity is proposed, which is a generalization of structural load bearing capacity (resistance). The probabilistic characteristics (mean value, variance, probability distribution function) of resilience capacity are derived. Applying the concept of resilience capacity, this paper explicitly shows the relationship between the following four items: time-invariant reliability-, time-invariant resilience-, time-dependent reliability-, and time-dependent resilience-based design methods. Furthermore, an LRFD-like design criterion is proposed for structural resilience-based design, namely, load and resilience capacity factor design (LRCFD), whose applicability is demonstrated through an example. The LRCFD method can also be used, in conjunction with LRFD, to achieve reliability and resilience goals simultaneously of the designed structure.
ASJC Scopus subject areas
- Engineering(all)
- Safety, Risk, Reliability and Quality
- Social Sciences(all)
- Safety Research
- Engineering(all)
- Mechanical Engineering
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering, Vol. 9, No. 3, 031105, 09.2023.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - From Reliability-Based Design to Resilience-Based Design
AU - Wang, Cao
AU - Ayyub, Bilal M.
AU - Beer, Michael
N1 - Publisher Copyright: Copyright © 2023 by ASME.
PY - 2023/9
Y1 - 2023/9
N2 - Reliability-based design has been a widely used methodology in the design of engineering structures. For example, the structural design standards in many countries have adopted the load and resistance factor design (LRFD) method. In recent years, the concept of resilience-based design has emerged, which additionally takes into account the posthazard functionality loss and recovery process of a structure. Under this context, the following questions naturally arise: can we establish a linkage between reliability-based design and resilience-based design? Does there exist a simple resilience-based design criterion that takes a similar form of LRFD? This paper addresses these questions, and the answer is "yes". To this end, a new concept of structural resilience capacity is proposed, which is a generalization of structural load bearing capacity (resistance). The probabilistic characteristics (mean value, variance, probability distribution function) of resilience capacity are derived. Applying the concept of resilience capacity, this paper explicitly shows the relationship between the following four items: time-invariant reliability-, time-invariant resilience-, time-dependent reliability-, and time-dependent resilience-based design methods. Furthermore, an LRFD-like design criterion is proposed for structural resilience-based design, namely, load and resilience capacity factor design (LRCFD), whose applicability is demonstrated through an example. The LRCFD method can also be used, in conjunction with LRFD, to achieve reliability and resilience goals simultaneously of the designed structure.
AB - Reliability-based design has been a widely used methodology in the design of engineering structures. For example, the structural design standards in many countries have adopted the load and resistance factor design (LRFD) method. In recent years, the concept of resilience-based design has emerged, which additionally takes into account the posthazard functionality loss and recovery process of a structure. Under this context, the following questions naturally arise: can we establish a linkage between reliability-based design and resilience-based design? Does there exist a simple resilience-based design criterion that takes a similar form of LRFD? This paper addresses these questions, and the answer is "yes". To this end, a new concept of structural resilience capacity is proposed, which is a generalization of structural load bearing capacity (resistance). The probabilistic characteristics (mean value, variance, probability distribution function) of resilience capacity are derived. Applying the concept of resilience capacity, this paper explicitly shows the relationship between the following four items: time-invariant reliability-, time-invariant resilience-, time-dependent reliability-, and time-dependent resilience-based design methods. Furthermore, an LRFD-like design criterion is proposed for structural resilience-based design, namely, load and resilience capacity factor design (LRCFD), whose applicability is demonstrated through an example. The LRCFD method can also be used, in conjunction with LRFD, to achieve reliability and resilience goals simultaneously of the designed structure.
UR - http://www.scopus.com/inward/record.url?scp=85196216916&partnerID=8YFLogxK
U2 - 10.1115/1.4062997
DO - 10.1115/1.4062997
M3 - Article
AN - SCOPUS:85196216916
VL - 9
JO - ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering
JF - ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering
SN - 2332-9017
IS - 3
M1 - 031105
ER -