Fragment-based approach for the efficient calculation of the refractive index of metal-organic frameworks

Research output: Contribution to journalArticleResearchpeer review

View graph of relations

Details

Original languageEnglish
Pages (from-to)19013–19023
Number of pages11
JournalPhysical Chemistry Chemical Physics
Volume25
Issue number28
Early online date30 Jun 2023
Publication statusPublished - 2023

Abstract

Increasing demands on materials in the field of optical applications require novel materials. Metal-organic frameworks (MOFs) are a prominent class of hybrid inorganic-organic materials with a modular layout. This allows the fine-tuning of their optical properties and the tailored design of optical systems. In the present theoretical study, an efficient method to calculate the refractive index (RI) of MOFs is introduced. For this purpose, the MOF is split into disjoint fragments, the linkers and the inorganic building units. The latter are disassembled until metal ions are obtained. The static polarizabilities are calculated individually using molecular density functional theory (DFT). From these, the MOF's RI is calculated. To obtain suitable polarizabilities, an exchange-correlation functional benchmark was performed first. Subsequently, this fragment-based approach was applied to a set of 24 MOFs including Zr-based MOFs and ZIFs. The calculated RI values were compared to the experimental values and validated using HSE06 hybrid functional DFT calculations with periodic boundary conditions. The examination of the MOF set revealed a speed up of the RI calculations by the fragment-based approach of up to 600 times with an estimated maximal deviation from the periodic DFT results below 4%.

Cite this

Fragment-based approach for the efficient calculation of the refractive index of metal-organic frameworks. / Treger, Marvin; König, Carolin; Behrens, Peter et al.
In: Physical Chemistry Chemical Physics, Vol. 25, No. 28, 2023, p. 19013–19023.

Research output: Contribution to journalArticleResearchpeer review

Download
@article{76b72db3dcbb4a1e918ca0f8908c5158,
title = "Fragment-based approach for the efficient calculation of the refractive index of metal-organic frameworks",
abstract = "Increasing demands on materials in the field of optical applications require novel materials. Metal-organic frameworks (MOFs) are a prominent class of hybrid inorganic-organic materials with a modular layout. This allows the fine-tuning of their optical properties and the tailored design of optical systems. In the present theoretical study, an efficient method to calculate the refractive index (RI) of MOFs is introduced. For this purpose, the MOF is split into disjoint fragments, the linkers and the inorganic building units. The latter are disassembled until metal ions are obtained. The static polarizabilities are calculated individually using molecular density functional theory (DFT). From these, the MOF's RI is calculated. To obtain suitable polarizabilities, an exchange-correlation functional benchmark was performed first. Subsequently, this fragment-based approach was applied to a set of 24 MOFs including Zr-based MOFs and ZIFs. The calculated RI values were compared to the experimental values and validated using HSE06 hybrid functional DFT calculations with periodic boundary conditions. The examination of the MOF set revealed a speed up of the RI calculations by the fragment-based approach of up to 600 times with an estimated maximal deviation from the periodic DFT results below 4%.",
author = "Marvin Treger and Carolin K{\"o}nig and Peter Behrens and Andreas Schneider",
note = "This work was supported by the LUH compute cluster, which is funded by the Leibniz University Hannover, Germany, the Lower Saxony Ministry of Science and Culture and the German Research Association (DFG). This work is funded by the DFG under Germany's Excellence Strategy within the Cluster of Excellence PhoenixD (EXC 2122, Project ID 390833453)",
year = "2023",
doi = "10.1039/D3CP02356G",
language = "English",
volume = "25",
pages = "19013–19023",
journal = "Physical Chemistry Chemical Physics",
issn = "1463-9076",
publisher = "Royal Society of Chemistry",
number = "28",

}

Download

TY - JOUR

T1 - Fragment-based approach for the efficient calculation of the refractive index of metal-organic frameworks

AU - Treger, Marvin

AU - König, Carolin

AU - Behrens, Peter

AU - Schneider, Andreas

N1 - This work was supported by the LUH compute cluster, which is funded by the Leibniz University Hannover, Germany, the Lower Saxony Ministry of Science and Culture and the German Research Association (DFG). This work is funded by the DFG under Germany's Excellence Strategy within the Cluster of Excellence PhoenixD (EXC 2122, Project ID 390833453)

PY - 2023

Y1 - 2023

N2 - Increasing demands on materials in the field of optical applications require novel materials. Metal-organic frameworks (MOFs) are a prominent class of hybrid inorganic-organic materials with a modular layout. This allows the fine-tuning of their optical properties and the tailored design of optical systems. In the present theoretical study, an efficient method to calculate the refractive index (RI) of MOFs is introduced. For this purpose, the MOF is split into disjoint fragments, the linkers and the inorganic building units. The latter are disassembled until metal ions are obtained. The static polarizabilities are calculated individually using molecular density functional theory (DFT). From these, the MOF's RI is calculated. To obtain suitable polarizabilities, an exchange-correlation functional benchmark was performed first. Subsequently, this fragment-based approach was applied to a set of 24 MOFs including Zr-based MOFs and ZIFs. The calculated RI values were compared to the experimental values and validated using HSE06 hybrid functional DFT calculations with periodic boundary conditions. The examination of the MOF set revealed a speed up of the RI calculations by the fragment-based approach of up to 600 times with an estimated maximal deviation from the periodic DFT results below 4%.

AB - Increasing demands on materials in the field of optical applications require novel materials. Metal-organic frameworks (MOFs) are a prominent class of hybrid inorganic-organic materials with a modular layout. This allows the fine-tuning of their optical properties and the tailored design of optical systems. In the present theoretical study, an efficient method to calculate the refractive index (RI) of MOFs is introduced. For this purpose, the MOF is split into disjoint fragments, the linkers and the inorganic building units. The latter are disassembled until metal ions are obtained. The static polarizabilities are calculated individually using molecular density functional theory (DFT). From these, the MOF's RI is calculated. To obtain suitable polarizabilities, an exchange-correlation functional benchmark was performed first. Subsequently, this fragment-based approach was applied to a set of 24 MOFs including Zr-based MOFs and ZIFs. The calculated RI values were compared to the experimental values and validated using HSE06 hybrid functional DFT calculations with periodic boundary conditions. The examination of the MOF set revealed a speed up of the RI calculations by the fragment-based approach of up to 600 times with an estimated maximal deviation from the periodic DFT results below 4%.

UR - http://www.scopus.com/inward/record.url?scp=85165442776&partnerID=8YFLogxK

U2 - 10.1039/D3CP02356G

DO - 10.1039/D3CP02356G

M3 - Article

VL - 25

SP - 19013

EP - 19023

JO - Physical Chemistry Chemical Physics

JF - Physical Chemistry Chemical Physics

SN - 1463-9076

IS - 28

ER -

By the same author(s)