Loading [MathJax]/extensions/tex2jax.js

Finite-time blow-up in the three-dimensional fully parabolic attraction-dominated attraction-repulsion chemotaxis system

Research output: Contribution to journalArticleResearchpeer review

Authors

  • Johannes Lankeit

Research Organisations

Details

Original languageEnglish
Article number125409
JournalJournal of Mathematical Analysis and Applications
Volume504
Issue number2
Early online date4 Jun 2021
Publication statusPublished - 15 Dec 2021

Abstract

We show that the attraction-repulsion chemotaxis system \begin{equation*} \begin{cases} u_t = \Delta u - \chi\nabla\cdot(u\nabla v_1) + \xi\nabla\cdot(u\nabla v_2)\\ \partial_t v_1 = \Delta v_1 - \beta v_1 + \alpha u \\ \partial_t v_2 = \Delta v_2 - \delta v_2 + \gamma u, \end{cases} \end{equation*} posed with homogeneous Neumann boundary conditions in bounded domains \(\Omega=B_R \subset \mathbb{R}^3\), \(R>0\), admits radially symmetric solutions which blow-up in finite time if it is attraction-dominated in the sense that \(\chi\alpha-\xi\gamma>0\).

Keywords

    math.AP, 35B44, 92C17, 35Q92, 35K55, Attraction-repulsion, Chemotaxis, Blow-up

ASJC Scopus subject areas

Cite this

Finite-time blow-up in the three-dimensional fully parabolic attraction-dominated attraction-repulsion chemotaxis system. / Lankeit, Johannes.
In: Journal of Mathematical Analysis and Applications, Vol. 504, No. 2, 125409, 15.12.2021.

Research output: Contribution to journalArticleResearchpeer review

Lankeit J. Finite-time blow-up in the three-dimensional fully parabolic attraction-dominated attraction-repulsion chemotaxis system. Journal of Mathematical Analysis and Applications. 2021 Dec 15;504(2):125409. Epub 2021 Jun 4. doi: 10.48550/arXiv.2103.17044, 10.1016/j.jmaa.2021.125409
Download
@article{434b965bf3d44c8398a78577d3933fbd,
title = "Finite-time blow-up in the three-dimensional fully parabolic attraction-dominated attraction-repulsion chemotaxis system",
abstract = " We show that the attraction-repulsion chemotaxis system \begin{equation*} \begin{cases} u_t = \Delta u - \chi\nabla\cdot(u\nabla v_1) + \xi\nabla\cdot(u\nabla v_2)\\ \partial_t v_1 = \Delta v_1 - \beta v_1 + \alpha u \\ \partial_t v_2 = \Delta v_2 - \delta v_2 + \gamma u, \end{cases} \end{equation*} posed with homogeneous Neumann boundary conditions in bounded domains \(\Omega=B_R \subset \mathbb{R}^3\), \(R>0\), admits radially symmetric solutions which blow-up in finite time if it is attraction-dominated in the sense that \(\chi\alpha-\xi\gamma>0\). ",
keywords = "math.AP, 35B44, 92C17, 35Q92, 35K55, Attraction-repulsion, Chemotaxis, Blow-up",
author = "Johannes Lankeit",
year = "2021",
month = dec,
day = "15",
doi = "10.48550/arXiv.2103.17044",
language = "English",
volume = "504",
journal = "Journal of Mathematical Analysis and Applications",
issn = "0022-247X",
publisher = "Academic Press Inc.",
number = "2",

}

Download

TY - JOUR

T1 - Finite-time blow-up in the three-dimensional fully parabolic attraction-dominated attraction-repulsion chemotaxis system

AU - Lankeit, Johannes

PY - 2021/12/15

Y1 - 2021/12/15

N2 - We show that the attraction-repulsion chemotaxis system \begin{equation*} \begin{cases} u_t = \Delta u - \chi\nabla\cdot(u\nabla v_1) + \xi\nabla\cdot(u\nabla v_2)\\ \partial_t v_1 = \Delta v_1 - \beta v_1 + \alpha u \\ \partial_t v_2 = \Delta v_2 - \delta v_2 + \gamma u, \end{cases} \end{equation*} posed with homogeneous Neumann boundary conditions in bounded domains \(\Omega=B_R \subset \mathbb{R}^3\), \(R>0\), admits radially symmetric solutions which blow-up in finite time if it is attraction-dominated in the sense that \(\chi\alpha-\xi\gamma>0\).

AB - We show that the attraction-repulsion chemotaxis system \begin{equation*} \begin{cases} u_t = \Delta u - \chi\nabla\cdot(u\nabla v_1) + \xi\nabla\cdot(u\nabla v_2)\\ \partial_t v_1 = \Delta v_1 - \beta v_1 + \alpha u \\ \partial_t v_2 = \Delta v_2 - \delta v_2 + \gamma u, \end{cases} \end{equation*} posed with homogeneous Neumann boundary conditions in bounded domains \(\Omega=B_R \subset \mathbb{R}^3\), \(R>0\), admits radially symmetric solutions which blow-up in finite time if it is attraction-dominated in the sense that \(\chi\alpha-\xi\gamma>0\).

KW - math.AP

KW - 35B44, 92C17, 35Q92, 35K55

KW - Attraction-repulsion

KW - Chemotaxis

KW - Blow-up

UR - http://www.scopus.com/inward/record.url?scp=85108717620&partnerID=8YFLogxK

U2 - 10.48550/arXiv.2103.17044

DO - 10.48550/arXiv.2103.17044

M3 - Article

VL - 504

JO - Journal of Mathematical Analysis and Applications

JF - Journal of Mathematical Analysis and Applications

SN - 0022-247X

IS - 2

M1 - 125409

ER -