Details
Original language | English |
---|---|
Pages (from-to) | S409-S410 |
Journal | ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik |
Volume | 80 |
Issue number | 4 SUPPL. 2 |
Publication status | Published - 2000 |
Abstract
A new material formulation to describe nonlinear hyperelastic orthotropic behaviour of composite membranes at finite strains is presented in this article. To provide numerically efficient calculations, a reduced integration scheme avoiding locking and hourglass instabilities is used. Restrictions concerning material parameters are discussed, and material parameters are adapted to experimental data. Numerical calculations are used to demonstrate the potential of the approach to inflated rubber matrix membranes applications.
ASJC Scopus subject areas
- Engineering(all)
- Computational Mechanics
- Mathematics(all)
- Applied Mathematics
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik, Vol. 80, No. 4 SUPPL. 2, 2000, p. S409-S410.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Finite element modeling of orthotropic material behaviour in pneumatic membranes
AU - Raible, T.
AU - Reese, S.
AU - Wriggers, Peter
PY - 2000
Y1 - 2000
N2 - A new material formulation to describe nonlinear hyperelastic orthotropic behaviour of composite membranes at finite strains is presented in this article. To provide numerically efficient calculations, a reduced integration scheme avoiding locking and hourglass instabilities is used. Restrictions concerning material parameters are discussed, and material parameters are adapted to experimental data. Numerical calculations are used to demonstrate the potential of the approach to inflated rubber matrix membranes applications.
AB - A new material formulation to describe nonlinear hyperelastic orthotropic behaviour of composite membranes at finite strains is presented in this article. To provide numerically efficient calculations, a reduced integration scheme avoiding locking and hourglass instabilities is used. Restrictions concerning material parameters are discussed, and material parameters are adapted to experimental data. Numerical calculations are used to demonstrate the potential of the approach to inflated rubber matrix membranes applications.
UR - http://www.scopus.com/inward/record.url?scp=23044519915&partnerID=8YFLogxK
U2 - 10.1002/zamm.20000801476
DO - 10.1002/zamm.20000801476
M3 - Article
AN - SCOPUS:23044519915
VL - 80
SP - S409-S410
JO - ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik
JF - ZAMM Zeitschrift fur Angewandte Mathematik und Mechanik
SN - 0044-2267
IS - 4 SUPPL. 2
ER -