Fatigue behavior of automatically welded tubular joints for offshore wind energy substructures

Research output: ThesisDoctoral thesis

Authors

  • Karsten Schürmann

Research Organisations

View graph of relations

Details

Translated title of the contributionErmüdungsverhalten automatisiert geschweißter Rohrknoten für Gründungsstrukturen von Offshore-Windenergieanlagen
Original languageEnglish
QualificationDoctor of Engineering
Awarding Institution
Supervised by
  • Peter Schaumann, Supervisor
Date of Award19 Mar 2021
Place of PublicationHannover
Publication statusPublished - 2021

Abstract

To successfully fight climate change, it is essential to replace fossil fuels with renewable energies. Offshore wind energy will significantly contribute to this transition. Since the required future bottom-fixed offshore wind farms will be located further away from shore and in greater water depth, in addition to (XL-) monopiles, jacket foundations are a reasonable alternative. To increase the competitiveness of jacket substructures, a modular jacket concept was developed within the offshore industry, combining prefabricated robot-welded tubular joints with standardized pipes. With regard to fatigue strength in particular, the automatically welded tubular joints have a large potential due to the reproducible fabrication process resulting in highly uniform welds. However, this potential cannot be adequately considered for the fatigue assessment due to the lack of suitable S-N curves. Up to now, serial fatigue tests to determine statistically validated S-N curves have only been conducted on manually welded tubular joints. Nevertheless, some robot-welded tubular joints were tested regarding fatigue strength, but neither the influence of an inner root welding nor the existing weld geometry was systematically evaluated. Against this background, the fatigue resistance of automatically manufactured tubular joints is determined within this thesis. Furthermore, this work focuses on the characterization of the uniform weld seam geometry as a prerequisite for an additionally proposed weld geometry optimization using bionic approaches. To determine a statistically validated S-N curve, serial fatigue tests were performed on 16 single- and 16 double-sided automatically welded tubular X-joints, whereby these joints were medium-scaled compared to real jacket dimensions. During these tests, the fatigue damage evolution was digitized using the digital image correlation method, enabling a detailed analysis of the tubular joints' fatigue behavior including crack initiation. The obtained fatigue resistance of the robot-welded tubular X-joints was moderately improved compared to the currently valid design S-N curve. The corresponding scatter was significantly reduced in comparison to the experience of manually welded tubular joints. In contrast, no significant impact of the inner root welding on the fatigue strength could be observed. In addition to the fatigue tests, the geometry of the robot-fabricated welds was systematically evaluated with regard to its reproducibility. The outcomes were then compared to reference values of manually welded tubular joints. For this purpose, analytical investigations were performed to determine the notch radius and flank angle distributions. Additionally, a reverse engineering application was developed to enable a real notch stress analyses of the actual weld geometry. The obtained statistics representing the distributions of the flank angles and real notch stresses confirmed the optical impression of a uniform and highly reproducible weld geometry when compared to the manually welded tubular joints. However, with respect to the minimum size of the achieved notch radii, no significant advantage of the robot-based welding could be determined. Finally, considering the statistically confirmed reproducibility of the weld geometry, a bionic optimization of the weld geometry profile was proposed, which resulted in a significant reduction of the decisive fatigue loads.

Cite this

Fatigue behavior of automatically welded tubular joints for offshore wind energy substructures. / Schürmann, Karsten.
Hannover, 2021. 330 p.

Research output: ThesisDoctoral thesis

Schürmann, K 2021, 'Fatigue behavior of automatically welded tubular joints for offshore wind energy substructures', Doctor of Engineering, Leibniz University Hannover, Hannover. https://doi.org/10.15488/11051
Download
@phdthesis{4f25ee0f3d954938b8e3774c77055ef5,
title = "Fatigue behavior of automatically welded tubular joints for offshore wind energy substructures",
abstract = "To successfully fight climate change, it is essential to replace fossil fuels with renewable energies. Offshore wind energy will significantly contribute to this transition. Since the required future bottom-fixed offshore wind farms will be located further away from shore and in greater water depth, in addition to (XL-) monopiles, jacket foundations are a reasonable alternative. To increase the competitiveness of jacket substructures, a modular jacket concept was developed within the offshore industry, combining prefabricated robot-welded tubular joints with standardized pipes. With regard to fatigue strength in particular, the automatically welded tubular joints have a large potential due to the reproducible fabrication process resulting in highly uniform welds. However, this potential cannot be adequately considered for the fatigue assessment due to the lack of suitable S-N curves. Up to now, serial fatigue tests to determine statistically validated S-N curves have only been conducted on manually welded tubular joints. Nevertheless, some robot-welded tubular joints were tested regarding fatigue strength, but neither the influence of an inner root welding nor the existing weld geometry was systematically evaluated. Against this background, the fatigue resistance of automatically manufactured tubular joints is determined within this thesis. Furthermore, this work focuses on the characterization of the uniform weld seam geometry as a prerequisite for an additionally proposed weld geometry optimization using bionic approaches. To determine a statistically validated S-N curve, serial fatigue tests were performed on 16 single- and 16 double-sided automatically welded tubular X-joints, whereby these joints were medium-scaled compared to real jacket dimensions. During these tests, the fatigue damage evolution was digitized using the digital image correlation method, enabling a detailed analysis of the tubular joints' fatigue behavior including crack initiation. The obtained fatigue resistance of the robot-welded tubular X-joints was moderately improved compared to the currently valid design S-N curve. The corresponding scatter was significantly reduced in comparison to the experience of manually welded tubular joints. In contrast, no significant impact of the inner root welding on the fatigue strength could be observed. In addition to the fatigue tests, the geometry of the robot-fabricated welds was systematically evaluated with regard to its reproducibility. The outcomes were then compared to reference values of manually welded tubular joints. For this purpose, analytical investigations were performed to determine the notch radius and flank angle distributions. Additionally, a reverse engineering application was developed to enable a real notch stress analyses of the actual weld geometry. The obtained statistics representing the distributions of the flank angles and real notch stresses confirmed the optical impression of a uniform and highly reproducible weld geometry when compared to the manually welded tubular joints. However, with respect to the minimum size of the achieved notch radii, no significant advantage of the robot-based welding could be determined. Finally, considering the statistically confirmed reproducibility of the weld geometry, a bionic optimization of the weld geometry profile was proposed, which resulted in a significant reduction of the decisive fatigue loads.",
author = "Karsten Sch{\"u}rmann",
note = "Doctoral thesis",
year = "2021",
doi = "10.15488/11051",
language = "English",
school = "Leibniz University Hannover",

}

Download

TY - BOOK

T1 - Fatigue behavior of automatically welded tubular joints for offshore wind energy substructures

AU - Schürmann, Karsten

N1 - Doctoral thesis

PY - 2021

Y1 - 2021

N2 - To successfully fight climate change, it is essential to replace fossil fuels with renewable energies. Offshore wind energy will significantly contribute to this transition. Since the required future bottom-fixed offshore wind farms will be located further away from shore and in greater water depth, in addition to (XL-) monopiles, jacket foundations are a reasonable alternative. To increase the competitiveness of jacket substructures, a modular jacket concept was developed within the offshore industry, combining prefabricated robot-welded tubular joints with standardized pipes. With regard to fatigue strength in particular, the automatically welded tubular joints have a large potential due to the reproducible fabrication process resulting in highly uniform welds. However, this potential cannot be adequately considered for the fatigue assessment due to the lack of suitable S-N curves. Up to now, serial fatigue tests to determine statistically validated S-N curves have only been conducted on manually welded tubular joints. Nevertheless, some robot-welded tubular joints were tested regarding fatigue strength, but neither the influence of an inner root welding nor the existing weld geometry was systematically evaluated. Against this background, the fatigue resistance of automatically manufactured tubular joints is determined within this thesis. Furthermore, this work focuses on the characterization of the uniform weld seam geometry as a prerequisite for an additionally proposed weld geometry optimization using bionic approaches. To determine a statistically validated S-N curve, serial fatigue tests were performed on 16 single- and 16 double-sided automatically welded tubular X-joints, whereby these joints were medium-scaled compared to real jacket dimensions. During these tests, the fatigue damage evolution was digitized using the digital image correlation method, enabling a detailed analysis of the tubular joints' fatigue behavior including crack initiation. The obtained fatigue resistance of the robot-welded tubular X-joints was moderately improved compared to the currently valid design S-N curve. The corresponding scatter was significantly reduced in comparison to the experience of manually welded tubular joints. In contrast, no significant impact of the inner root welding on the fatigue strength could be observed. In addition to the fatigue tests, the geometry of the robot-fabricated welds was systematically evaluated with regard to its reproducibility. The outcomes were then compared to reference values of manually welded tubular joints. For this purpose, analytical investigations were performed to determine the notch radius and flank angle distributions. Additionally, a reverse engineering application was developed to enable a real notch stress analyses of the actual weld geometry. The obtained statistics representing the distributions of the flank angles and real notch stresses confirmed the optical impression of a uniform and highly reproducible weld geometry when compared to the manually welded tubular joints. However, with respect to the minimum size of the achieved notch radii, no significant advantage of the robot-based welding could be determined. Finally, considering the statistically confirmed reproducibility of the weld geometry, a bionic optimization of the weld geometry profile was proposed, which resulted in a significant reduction of the decisive fatigue loads.

AB - To successfully fight climate change, it is essential to replace fossil fuels with renewable energies. Offshore wind energy will significantly contribute to this transition. Since the required future bottom-fixed offshore wind farms will be located further away from shore and in greater water depth, in addition to (XL-) monopiles, jacket foundations are a reasonable alternative. To increase the competitiveness of jacket substructures, a modular jacket concept was developed within the offshore industry, combining prefabricated robot-welded tubular joints with standardized pipes. With regard to fatigue strength in particular, the automatically welded tubular joints have a large potential due to the reproducible fabrication process resulting in highly uniform welds. However, this potential cannot be adequately considered for the fatigue assessment due to the lack of suitable S-N curves. Up to now, serial fatigue tests to determine statistically validated S-N curves have only been conducted on manually welded tubular joints. Nevertheless, some robot-welded tubular joints were tested regarding fatigue strength, but neither the influence of an inner root welding nor the existing weld geometry was systematically evaluated. Against this background, the fatigue resistance of automatically manufactured tubular joints is determined within this thesis. Furthermore, this work focuses on the characterization of the uniform weld seam geometry as a prerequisite for an additionally proposed weld geometry optimization using bionic approaches. To determine a statistically validated S-N curve, serial fatigue tests were performed on 16 single- and 16 double-sided automatically welded tubular X-joints, whereby these joints were medium-scaled compared to real jacket dimensions. During these tests, the fatigue damage evolution was digitized using the digital image correlation method, enabling a detailed analysis of the tubular joints' fatigue behavior including crack initiation. The obtained fatigue resistance of the robot-welded tubular X-joints was moderately improved compared to the currently valid design S-N curve. The corresponding scatter was significantly reduced in comparison to the experience of manually welded tubular joints. In contrast, no significant impact of the inner root welding on the fatigue strength could be observed. In addition to the fatigue tests, the geometry of the robot-fabricated welds was systematically evaluated with regard to its reproducibility. The outcomes were then compared to reference values of manually welded tubular joints. For this purpose, analytical investigations were performed to determine the notch radius and flank angle distributions. Additionally, a reverse engineering application was developed to enable a real notch stress analyses of the actual weld geometry. The obtained statistics representing the distributions of the flank angles and real notch stresses confirmed the optical impression of a uniform and highly reproducible weld geometry when compared to the manually welded tubular joints. However, with respect to the minimum size of the achieved notch radii, no significant advantage of the robot-based welding could be determined. Finally, considering the statistically confirmed reproducibility of the weld geometry, a bionic optimization of the weld geometry profile was proposed, which resulted in a significant reduction of the decisive fatigue loads.

U2 - 10.15488/11051

DO - 10.15488/11051

M3 - Doctoral thesis

CY - Hannover

ER -