Details
Original language | English |
---|---|
Article number | 118864 |
Number of pages | 14 |
Journal | Earth and Planetary Science Letters |
Volume | 643 |
Early online date | 19 Jul 2024 |
Publication status | Published - 1 Oct 2024 |
Abstract
The 3930 BP Fall Stratified (FS) eruption at Mt. Etna is a rare example of a highly explosive eruption of primitive (picritic) magma directly from the mantle. The eruption produced ash plumes up to an estimated 20 km height, leading to a volcanic explosivity index (VEI) 4 (subplinian). Given its volatile-rich and primitive nature, the FS magma may have ascended rapidly from great depths to avoid fractionation and mixing within the extensive plumbing system beneath Etna. To determine the pressures from which the FS magma derived, we perform rehomogenization experiments on melt inclusions hosted in Fo90–91 olivines to resorb shrinkage bubbles and determine the initial H2O and CO2 in the melt. With measured CO2 concentrations of up to 9600 ppm, volatile solubility models yield magma storage pressures of 630–800 MPa. These correspond to depths of 24–30 km, which are comparable to the seismologically estimated Moho. Therefore, the magma's high CO2 concentration must come from carbon in the mantle (likely from subducted carbonates), as opposed to assimilation of shallow (<10 km) crustal carbonates. Diffusion modeling of H2O and forsterite zonation profiles in clear, euhedral, and crystallographically oriented olivines indicates rapid ascent of magma directly from its source region to the surface. Forsterite profiles exhibit a narrow rim of growth zoning but no detectable diffusional zoning, reflecting maximum ascent times of 1–5 days. Eighteen measured H2O profiles result in remarkably uniform decompression rates of 0.47 MPa/s (95% confidence interval of 0.16–1.28 MPa/s), which is among the fastest measured for basaltic-intermediate magmas. These decompression rates indicate that the final stage of magma ascent over the region in which H2O degasses (between the surface and ∼ 15 km) occurred extremely fast at ∼ 17.5 m/s. This eruption may provide a link between primary magma composition and eruption intensity: we propose that the unusually explosive nature of this picritic eruption was driven by high H2O and CO2 concentrations, which led to continuously rapid ascent without stalling, all the way from the Moho.
Keywords
- Carbonate, Etna, Explosive eruption, Magma decompression rate, Melt inclusions, Volatiles
ASJC Scopus subject areas
- Earth and Planetary Sciences(all)
- Geophysics
- Earth and Planetary Sciences(all)
- Geochemistry and Petrology
- Earth and Planetary Sciences(all)
- Space and Planetary Science
- Earth and Planetary Sciences(all)
- Earth and Planetary Sciences (miscellaneous)
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Earth and Planetary Science Letters, Vol. 643, 118864, 01.10.2024.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Fast, furious, and gassy
T2 - Etna's explosive eruption from the mantle
AU - Barth, Anna
AU - Portnyagin, Maxim
AU - Mironov, Nikita
AU - Holtz, Francois
AU - Moussallam, Yves
AU - Rose-Koga, Estelle F.
AU - Rasmussen, Daniel
AU - Towbin, Henry
AU - Gonnermann, Helge
AU - Mutch, Euan J.F.
AU - Rotolo, Silvio G.
AU - Plank, Terry
N1 - Publisher Copyright: © 2024
PY - 2024/10/1
Y1 - 2024/10/1
N2 - The 3930 BP Fall Stratified (FS) eruption at Mt. Etna is a rare example of a highly explosive eruption of primitive (picritic) magma directly from the mantle. The eruption produced ash plumes up to an estimated 20 km height, leading to a volcanic explosivity index (VEI) 4 (subplinian). Given its volatile-rich and primitive nature, the FS magma may have ascended rapidly from great depths to avoid fractionation and mixing within the extensive plumbing system beneath Etna. To determine the pressures from which the FS magma derived, we perform rehomogenization experiments on melt inclusions hosted in Fo90–91 olivines to resorb shrinkage bubbles and determine the initial H2O and CO2 in the melt. With measured CO2 concentrations of up to 9600 ppm, volatile solubility models yield magma storage pressures of 630–800 MPa. These correspond to depths of 24–30 km, which are comparable to the seismologically estimated Moho. Therefore, the magma's high CO2 concentration must come from carbon in the mantle (likely from subducted carbonates), as opposed to assimilation of shallow (<10 km) crustal carbonates. Diffusion modeling of H2O and forsterite zonation profiles in clear, euhedral, and crystallographically oriented olivines indicates rapid ascent of magma directly from its source region to the surface. Forsterite profiles exhibit a narrow rim of growth zoning but no detectable diffusional zoning, reflecting maximum ascent times of 1–5 days. Eighteen measured H2O profiles result in remarkably uniform decompression rates of 0.47 MPa/s (95% confidence interval of 0.16–1.28 MPa/s), which is among the fastest measured for basaltic-intermediate magmas. These decompression rates indicate that the final stage of magma ascent over the region in which H2O degasses (between the surface and ∼ 15 km) occurred extremely fast at ∼ 17.5 m/s. This eruption may provide a link between primary magma composition and eruption intensity: we propose that the unusually explosive nature of this picritic eruption was driven by high H2O and CO2 concentrations, which led to continuously rapid ascent without stalling, all the way from the Moho.
AB - The 3930 BP Fall Stratified (FS) eruption at Mt. Etna is a rare example of a highly explosive eruption of primitive (picritic) magma directly from the mantle. The eruption produced ash plumes up to an estimated 20 km height, leading to a volcanic explosivity index (VEI) 4 (subplinian). Given its volatile-rich and primitive nature, the FS magma may have ascended rapidly from great depths to avoid fractionation and mixing within the extensive plumbing system beneath Etna. To determine the pressures from which the FS magma derived, we perform rehomogenization experiments on melt inclusions hosted in Fo90–91 olivines to resorb shrinkage bubbles and determine the initial H2O and CO2 in the melt. With measured CO2 concentrations of up to 9600 ppm, volatile solubility models yield magma storage pressures of 630–800 MPa. These correspond to depths of 24–30 km, which are comparable to the seismologically estimated Moho. Therefore, the magma's high CO2 concentration must come from carbon in the mantle (likely from subducted carbonates), as opposed to assimilation of shallow (<10 km) crustal carbonates. Diffusion modeling of H2O and forsterite zonation profiles in clear, euhedral, and crystallographically oriented olivines indicates rapid ascent of magma directly from its source region to the surface. Forsterite profiles exhibit a narrow rim of growth zoning but no detectable diffusional zoning, reflecting maximum ascent times of 1–5 days. Eighteen measured H2O profiles result in remarkably uniform decompression rates of 0.47 MPa/s (95% confidence interval of 0.16–1.28 MPa/s), which is among the fastest measured for basaltic-intermediate magmas. These decompression rates indicate that the final stage of magma ascent over the region in which H2O degasses (between the surface and ∼ 15 km) occurred extremely fast at ∼ 17.5 m/s. This eruption may provide a link between primary magma composition and eruption intensity: we propose that the unusually explosive nature of this picritic eruption was driven by high H2O and CO2 concentrations, which led to continuously rapid ascent without stalling, all the way from the Moho.
KW - Carbonate
KW - Etna
KW - Explosive eruption
KW - Magma decompression rate
KW - Melt inclusions
KW - Volatiles
UR - http://www.scopus.com/inward/record.url?scp=85199112683&partnerID=8YFLogxK
U2 - 10.1016/j.epsl.2024.118864
DO - 10.1016/j.epsl.2024.118864
M3 - Article
AN - SCOPUS:85199112683
VL - 643
JO - Earth and Planetary Science Letters
JF - Earth and Planetary Science Letters
SN - 0012-821X
M1 - 118864
ER -