Details
Original language | English |
---|---|
Pages (from-to) | 711-723 |
Number of pages | 13 |
Journal | Ocean science |
Volume | 20 |
Issue number | 3 |
Publication status | Published - 11 Jun 2024 |
Abstract
Intertidal flats and salt marshes in channel–shoal environments are at severe risk of drowning under sea level rise (SLR) ultimately ceasing their function of coastal defense. Earlier studies indicated that these environments can be resilient against moderate SLR as their mean height is believed to correlate with tidal amplitude and mean sea level. Recent morphological analyses in the German Wadden Sea on the northwestern European continental shelf contradicted this assumption as mean tidal flat accretion surpassed relative SLR, indicating that nonlinear feedback between SLR, coastal morphodynamics, and tidal dynamics played a role. We explored this relationship in the German Wadden Sea’s channel–shoal environment by revisiting the sensitivity of tidal dynamics to observed SLR and coastal bathymetry evolution over one nodal cycle (1997 to 2015) with a numerical model. We found a proportional response of tidal high and low water to SLR when the bathymetry was kept constant. In contrast, coastal bathymetry evolution caused a spatially varying hydrodynamic reaction with both increases and decreases in patterns of tidal characteristics within a few kilometers. An explorative assessment of potential mechanisms suggested that energy dissipation declined near the coast, which we related to a decreasing tidal prism and declining tidal energy import. Our study stresses the fact that an accurate representation of coastal morphology in hindcasts, now-casts, and ensembles for bathymetry evolution to assess the impact of SLR is needed when using numerical models.
ASJC Scopus subject areas
- Earth and Planetary Sciences(all)
- Oceanography
- Earth and Planetary Sciences(all)
- Palaeontology
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Ocean science, Vol. 20, No. 3, 11.06.2024, p. 711-723.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Exploring the tidal response to bathymetry evolution and present-day sea level rise in a channel–shoal environment
AU - Lepper, Robert
AU - Jänicke, Leon
AU - Hache, Ingo
AU - Jordan, Christian
AU - Kösters, Frank
N1 - Publisher Copyright: © Author(s) 2024.
PY - 2024/6/11
Y1 - 2024/6/11
N2 - Intertidal flats and salt marshes in channel–shoal environments are at severe risk of drowning under sea level rise (SLR) ultimately ceasing their function of coastal defense. Earlier studies indicated that these environments can be resilient against moderate SLR as their mean height is believed to correlate with tidal amplitude and mean sea level. Recent morphological analyses in the German Wadden Sea on the northwestern European continental shelf contradicted this assumption as mean tidal flat accretion surpassed relative SLR, indicating that nonlinear feedback between SLR, coastal morphodynamics, and tidal dynamics played a role. We explored this relationship in the German Wadden Sea’s channel–shoal environment by revisiting the sensitivity of tidal dynamics to observed SLR and coastal bathymetry evolution over one nodal cycle (1997 to 2015) with a numerical model. We found a proportional response of tidal high and low water to SLR when the bathymetry was kept constant. In contrast, coastal bathymetry evolution caused a spatially varying hydrodynamic reaction with both increases and decreases in patterns of tidal characteristics within a few kilometers. An explorative assessment of potential mechanisms suggested that energy dissipation declined near the coast, which we related to a decreasing tidal prism and declining tidal energy import. Our study stresses the fact that an accurate representation of coastal morphology in hindcasts, now-casts, and ensembles for bathymetry evolution to assess the impact of SLR is needed when using numerical models.
AB - Intertidal flats and salt marshes in channel–shoal environments are at severe risk of drowning under sea level rise (SLR) ultimately ceasing their function of coastal defense. Earlier studies indicated that these environments can be resilient against moderate SLR as their mean height is believed to correlate with tidal amplitude and mean sea level. Recent morphological analyses in the German Wadden Sea on the northwestern European continental shelf contradicted this assumption as mean tidal flat accretion surpassed relative SLR, indicating that nonlinear feedback between SLR, coastal morphodynamics, and tidal dynamics played a role. We explored this relationship in the German Wadden Sea’s channel–shoal environment by revisiting the sensitivity of tidal dynamics to observed SLR and coastal bathymetry evolution over one nodal cycle (1997 to 2015) with a numerical model. We found a proportional response of tidal high and low water to SLR when the bathymetry was kept constant. In contrast, coastal bathymetry evolution caused a spatially varying hydrodynamic reaction with both increases and decreases in patterns of tidal characteristics within a few kilometers. An explorative assessment of potential mechanisms suggested that energy dissipation declined near the coast, which we related to a decreasing tidal prism and declining tidal energy import. Our study stresses the fact that an accurate representation of coastal morphology in hindcasts, now-casts, and ensembles for bathymetry evolution to assess the impact of SLR is needed when using numerical models.
UR - http://www.scopus.com/inward/record.url?scp=85196001541&partnerID=8YFLogxK
U2 - 10.5194/os-20-711-2024
DO - 10.5194/os-20-711-2024
M3 - Article
AN - SCOPUS:85196001541
VL - 20
SP - 711
EP - 723
JO - Ocean science
JF - Ocean science
SN - 1812-0784
IS - 3
ER -