Details
Original language | English |
---|---|
Pages (from-to) | 303-322 |
Number of pages | 20 |
Journal | Geochimica et Cosmochimica Acta |
Volume | 203 |
Early online date | 23 Jan 2017 |
Publication status | Published - 15 Apr 2017 |
Abstract
In this study we experimentally assess whether the bulk composition of the Kiruna-type iron–fluorine Vergenoeg deposit, South Africa (17 wt.% SiO2 and 55 wt.% FeOtot) could correspond to an immiscible Fe-rich melt paired with its host rhyolite. Synthetic powder of the host rhyolite was mixed with mafic end-members (ore rocks) in variable proportions. Experimental conditions were 1–2 kbar and 1010 °C, with a range of H2O and F contents in the starting compositions. Pairs of distinct immiscible liquids occur in experiments saturated with fluorite, under relatively dry conditions, and at oxygen fugacity conditions corresponding to FMQ−1.4 to FMQ+1.8 (FMQ = fayalite-magnetite-quartz solid buffer). The Si-rich immiscible liquids contain 60.9–73.0 wt.% SiO2, 9.1–12.5 wt.% FeOtot, 2.4–4.2 wt.% F, and are enriched in Na2O, K2O and Al2O3. The paired Fe-rich immiscible melts have 41.0–49.5 wt.% SiO2, 20.6–36.1 wt.% FeOtot and 4.5–6.0 wt.% F, and are enriched in MgO, CaO and TiO2. Immiscibility does not develop in experiments performed under water-rich (aH2O > 0.2; a = activity) and/or oxidized (>FMQ+1.8) conditions. In all experiments, solid phases are magnetite, ±fayalite, fluorite and tridymite. Our results indicate that the rocks from the Vergenoeg pipe crystallized in a magma chamber hosting two immiscible silicate melts. Crystallization of the pipe from the Fe-rich melt explains its extreme enrichment in Ca, F and Fe compared to the host rhyolitic rocks. However, its low bulk silica content compared to experimental Fe-rich melts indicates that the pipe formed by remobilization of a mafic crystal mush dominated by magnetite and fayalite. Segregation of evolved residual liquids as well as the conjugate immiscible Si-rich melt produced the host rhyolite. The huge amount of fluorine in Vergenoeg ores (∼12 wt.% F) can hardly be explained by simple crystallization of fluorite from the Fe-rich silicate melt (up to 6 wt.% F at fluorite saturation). Instead, we confirm a previous hypothesis that the fluorite enrichment is, in part, due to the migration of hydrothermal fluids.
Keywords
- Iron-fluorine deposit, Kiruna-type, Liquid immiscibility, Silicate melt, Vergenoeg
ASJC Scopus subject areas
- Earth and Planetary Sciences(all)
- Geochemistry and Petrology
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Geochimica et Cosmochimica Acta, Vol. 203, 15.04.2017, p. 303-322.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Experimental study of liquid immiscibility in the Kiruna-type Vergenoeg iron–fluorine deposit, South Africa
AU - Hou, Tong
AU - Charlier, Bernard
AU - Namur, Olivier
AU - Schütte, Philip
AU - Schwarz-Schampera, Ulrich
AU - Zhang, Zhaochong
AU - Holtz, Francois
N1 - Publisher Copyright: © 2017 Elsevier Ltd Copyright: Copyright 2018 Elsevier B.V., All rights reserved.
PY - 2017/4/15
Y1 - 2017/4/15
N2 - In this study we experimentally assess whether the bulk composition of the Kiruna-type iron–fluorine Vergenoeg deposit, South Africa (17 wt.% SiO2 and 55 wt.% FeOtot) could correspond to an immiscible Fe-rich melt paired with its host rhyolite. Synthetic powder of the host rhyolite was mixed with mafic end-members (ore rocks) in variable proportions. Experimental conditions were 1–2 kbar and 1010 °C, with a range of H2O and F contents in the starting compositions. Pairs of distinct immiscible liquids occur in experiments saturated with fluorite, under relatively dry conditions, and at oxygen fugacity conditions corresponding to FMQ−1.4 to FMQ+1.8 (FMQ = fayalite-magnetite-quartz solid buffer). The Si-rich immiscible liquids contain 60.9–73.0 wt.% SiO2, 9.1–12.5 wt.% FeOtot, 2.4–4.2 wt.% F, and are enriched in Na2O, K2O and Al2O3. The paired Fe-rich immiscible melts have 41.0–49.5 wt.% SiO2, 20.6–36.1 wt.% FeOtot and 4.5–6.0 wt.% F, and are enriched in MgO, CaO and TiO2. Immiscibility does not develop in experiments performed under water-rich (aH2O > 0.2; a = activity) and/or oxidized (>FMQ+1.8) conditions. In all experiments, solid phases are magnetite, ±fayalite, fluorite and tridymite. Our results indicate that the rocks from the Vergenoeg pipe crystallized in a magma chamber hosting two immiscible silicate melts. Crystallization of the pipe from the Fe-rich melt explains its extreme enrichment in Ca, F and Fe compared to the host rhyolitic rocks. However, its low bulk silica content compared to experimental Fe-rich melts indicates that the pipe formed by remobilization of a mafic crystal mush dominated by magnetite and fayalite. Segregation of evolved residual liquids as well as the conjugate immiscible Si-rich melt produced the host rhyolite. The huge amount of fluorine in Vergenoeg ores (∼12 wt.% F) can hardly be explained by simple crystallization of fluorite from the Fe-rich silicate melt (up to 6 wt.% F at fluorite saturation). Instead, we confirm a previous hypothesis that the fluorite enrichment is, in part, due to the migration of hydrothermal fluids.
AB - In this study we experimentally assess whether the bulk composition of the Kiruna-type iron–fluorine Vergenoeg deposit, South Africa (17 wt.% SiO2 and 55 wt.% FeOtot) could correspond to an immiscible Fe-rich melt paired with its host rhyolite. Synthetic powder of the host rhyolite was mixed with mafic end-members (ore rocks) in variable proportions. Experimental conditions were 1–2 kbar and 1010 °C, with a range of H2O and F contents in the starting compositions. Pairs of distinct immiscible liquids occur in experiments saturated with fluorite, under relatively dry conditions, and at oxygen fugacity conditions corresponding to FMQ−1.4 to FMQ+1.8 (FMQ = fayalite-magnetite-quartz solid buffer). The Si-rich immiscible liquids contain 60.9–73.0 wt.% SiO2, 9.1–12.5 wt.% FeOtot, 2.4–4.2 wt.% F, and are enriched in Na2O, K2O and Al2O3. The paired Fe-rich immiscible melts have 41.0–49.5 wt.% SiO2, 20.6–36.1 wt.% FeOtot and 4.5–6.0 wt.% F, and are enriched in MgO, CaO and TiO2. Immiscibility does not develop in experiments performed under water-rich (aH2O > 0.2; a = activity) and/or oxidized (>FMQ+1.8) conditions. In all experiments, solid phases are magnetite, ±fayalite, fluorite and tridymite. Our results indicate that the rocks from the Vergenoeg pipe crystallized in a magma chamber hosting two immiscible silicate melts. Crystallization of the pipe from the Fe-rich melt explains its extreme enrichment in Ca, F and Fe compared to the host rhyolitic rocks. However, its low bulk silica content compared to experimental Fe-rich melts indicates that the pipe formed by remobilization of a mafic crystal mush dominated by magnetite and fayalite. Segregation of evolved residual liquids as well as the conjugate immiscible Si-rich melt produced the host rhyolite. The huge amount of fluorine in Vergenoeg ores (∼12 wt.% F) can hardly be explained by simple crystallization of fluorite from the Fe-rich silicate melt (up to 6 wt.% F at fluorite saturation). Instead, we confirm a previous hypothesis that the fluorite enrichment is, in part, due to the migration of hydrothermal fluids.
KW - Iron-fluorine deposit
KW - Kiruna-type
KW - Liquid immiscibility
KW - Silicate melt
KW - Vergenoeg
UR - http://www.scopus.com/inward/record.url?scp=85011664765&partnerID=8YFLogxK
U2 - 10.1016/j.gca.2017.01.025
DO - 10.1016/j.gca.2017.01.025
M3 - Article
AN - SCOPUS:85011664765
VL - 203
SP - 303
EP - 322
JO - Geochimica et Cosmochimica Acta
JF - Geochimica et Cosmochimica Acta
SN - 0016-7037
ER -