Details
Original language | English |
---|---|
Pages (from-to) | 583-598 |
Number of pages | 16 |
Journal | Annales de l'Institut Henri Poincare (C) Analyse Non Lineaire |
Volume | 28 |
Issue number | 4 |
Publication status | Published - Aug 2011 |
Abstract
We prove global existence of nonnegative weak solutions to a degenerate parabolic system which models the interaction of two thin fluid films in a porous medium. Furthermore, we show that these weak solutions converge at an exponential rate towards flat equilibria.
Keywords
- Degenerate parabolic system, Exponential stability, Liapunov functional, Thin film, Weak solutions
ASJC Scopus subject areas
- Mathematics(all)
- Analysis
- Mathematics(all)
- Mathematical Physics
- Mathematics(all)
- Applied Mathematics
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Annales de l'Institut Henri Poincare (C) Analyse Non Lineaire, Vol. 28, No. 4, 08.2011, p. 583-598.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Existence and stability of weak solutions for a degenerate parabolic system modelling two-phase flows in porous media
AU - Escher, Joachim
AU - Laurençot, Philippe
AU - Matioc, Bogdan-Vasile
PY - 2011/8
Y1 - 2011/8
N2 - We prove global existence of nonnegative weak solutions to a degenerate parabolic system which models the interaction of two thin fluid films in a porous medium. Furthermore, we show that these weak solutions converge at an exponential rate towards flat equilibria.
AB - We prove global existence of nonnegative weak solutions to a degenerate parabolic system which models the interaction of two thin fluid films in a porous medium. Furthermore, we show that these weak solutions converge at an exponential rate towards flat equilibria.
KW - Degenerate parabolic system
KW - Exponential stability
KW - Liapunov functional
KW - Thin film
KW - Weak solutions
UR - http://www.scopus.com/inward/record.url?scp=79960641120&partnerID=8YFLogxK
U2 - 10.1016/j.anihpc.2011.04.001
DO - 10.1016/j.anihpc.2011.04.001
M3 - Article
AN - SCOPUS:79960641120
VL - 28
SP - 583
EP - 598
JO - Annales de l'Institut Henri Poincare (C) Analyse Non Lineaire
JF - Annales de l'Institut Henri Poincare (C) Analyse Non Lineaire
SN - 0294-1449
IS - 4
ER -