Evolution of spacelike surfaces in AdS3 by their Lagrangian angle

Research output: Contribution to journalArticleResearchpeer review

View graph of relations

Details

Original languageEnglish
Pages (from-to)1443-1468
Number of pages26
JournalMathematische Annalen
Volume355
Issue number4
Publication statusPublished - 1 Jan 2013

Abstract

We study spacelike hypersurfaces M in an anti-De Sitter spacetime N of constant sectional curvature -κκ>0 that evolve by the Lagrangian angle of their Gauß maps. In the two dimensional case we prove a convergence result to a maximal spacelike surface, if the Gauß curvature K of the initial surface M⊂N and the sectional curvature of N satisfy {pipe}K{pipe}≤k.

ASJC Scopus subject areas

Cite this

Evolution of spacelike surfaces in AdS3 by their Lagrangian angle. / Smoczyk, Knut.
In: Mathematische Annalen, Vol. 355, No. 4, 01.01.2013, p. 1443-1468.

Research output: Contribution to journalArticleResearchpeer review

Smoczyk K. Evolution of spacelike surfaces in AdS3 by their Lagrangian angle. Mathematische Annalen. 2013 Jan 1;355(4):1443-1468. doi: 10.1007/s00208-012-0827-8
Download
@article{0d1dc3be709640fe9dc4058e4e197438,
title = "Evolution of spacelike surfaces in AdS3 by their Lagrangian angle",
abstract = "We study spacelike hypersurfaces M in an anti-De Sitter spacetime N of constant sectional curvature -κκ>0 that evolve by the Lagrangian angle of their Gau{\ss} maps. In the two dimensional case we prove a convergence result to a maximal spacelike surface, if the Gau{\ss} curvature K of the initial surface M⊂N and the sectional curvature of N satisfy {pipe}K{pipe}≤k.",
author = "Knut Smoczyk",
year = "2013",
month = jan,
day = "1",
doi = "10.1007/s00208-012-0827-8",
language = "English",
volume = "355",
pages = "1443--1468",
journal = "Mathematische Annalen",
issn = "0025-5831",
publisher = "Springer New York",
number = "4",

}

Download

TY - JOUR

T1 - Evolution of spacelike surfaces in AdS3 by their Lagrangian angle

AU - Smoczyk, Knut

PY - 2013/1/1

Y1 - 2013/1/1

N2 - We study spacelike hypersurfaces M in an anti-De Sitter spacetime N of constant sectional curvature -κκ>0 that evolve by the Lagrangian angle of their Gauß maps. In the two dimensional case we prove a convergence result to a maximal spacelike surface, if the Gauß curvature K of the initial surface M⊂N and the sectional curvature of N satisfy {pipe}K{pipe}≤k.

AB - We study spacelike hypersurfaces M in an anti-De Sitter spacetime N of constant sectional curvature -κκ>0 that evolve by the Lagrangian angle of their Gauß maps. In the two dimensional case we prove a convergence result to a maximal spacelike surface, if the Gauß curvature K of the initial surface M⊂N and the sectional curvature of N satisfy {pipe}K{pipe}≤k.

UR - http://www.scopus.com/inward/record.url?scp=84875627617&partnerID=8YFLogxK

U2 - 10.1007/s00208-012-0827-8

DO - 10.1007/s00208-012-0827-8

M3 - Article

AN - SCOPUS:84875627617

VL - 355

SP - 1443

EP - 1468

JO - Mathematische Annalen

JF - Mathematische Annalen

SN - 0025-5831

IS - 4

ER -

By the same author(s)