Details
Original language | English |
---|---|
Pages (from-to) | 55-70 |
Number of pages | 16 |
Journal | Agricultural water management |
Volume | 193 |
Early online date | 10 Aug 2017 |
Publication status | Published - Nov 2017 |
Abstract
The quantification of soil moisture under different soils and crops at regional scale is a challenging task. Hence, such studies are limited by the availability of ground based measurements. The current study evaluates the spatial and temporal patterns of daily soil moisture simulated by the Soil and Water Assessment Tool (SWAT) for the upper 30 cm of the soil profile with indirect soil moisture estimates from Landsat for 2016. The Thermal Vegetation Difference Index (TVDI), was calculated based on the Normalized Difference Vegetation Index (NDVI) and the brightness temperature (BT) using Landsat images, from which regression models were trained by using field measurements from Time Domain Reflectometer (TDR) to calculate soil moisture. Two agricultural catchments namely, Gerdau and Wipperau in Germany were satisfactorily calibrated using SWAT for daily streamflow (1975–2000) with NSE (Nash-Sutcliffe-Efficiency) >0.55 and PBIAS (Percent bias) <5.5%. The parameter uncertainty assessment during the irrigation season (Mar–Sept, 2016) for soil moisture revealed that the uncertainty band is narrow (p-factor = 0.57–0.83; r-factor = 0.52 − 1.3). Spatial and temporal patterns of soil moisture from Landsat and SWAT were evaluated by using boxplots and absolute soil moisture difference maps. Results revealed that the overall spatial and temporal patterns of boxplots matched better for the dry period (correlation, r ≥ 0.90) compared to the wet period (r ≥ 0.57). The mean absolute difference between soil moisture from Landsat and SWAT ranged between 0.9–10% for most soils. In addition to it, the soil map was refined to match soil moisture patterns shown in Landsat images for one sandy soil, which further improved the mean absolute difference (1.06–6%). The current study provides an approach to use remotely sensed soil moisture for verifying hydrological modeling results and for optimizing the parameterization of soils, which may bridge the gap between global, regional and field studies in agricultural water management.
Keywords
- Landsat, NDVI, Parameter uncertainty, Soil moisture, TDR, TVDI
ASJC Scopus subject areas
- Agricultural and Biological Sciences(all)
- Agronomy and Crop Science
- Environmental Science(all)
- Water Science and Technology
- Agricultural and Biological Sciences(all)
- Soil Science
- Earth and Planetary Sciences(all)
- Earth-Surface Processes
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Agricultural water management, Vol. 193, 11.2017, p. 55-70.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Evaluation of SWAT simulated soil moisture at catchment scale by field measurements and Landsat derived indices
AU - Uniyal, Bhumika
AU - Dietrich, Jörg
AU - Vasilakos, Christos
AU - Tzoraki, Ourania
PY - 2017/11
Y1 - 2017/11
N2 - The quantification of soil moisture under different soils and crops at regional scale is a challenging task. Hence, such studies are limited by the availability of ground based measurements. The current study evaluates the spatial and temporal patterns of daily soil moisture simulated by the Soil and Water Assessment Tool (SWAT) for the upper 30 cm of the soil profile with indirect soil moisture estimates from Landsat for 2016. The Thermal Vegetation Difference Index (TVDI), was calculated based on the Normalized Difference Vegetation Index (NDVI) and the brightness temperature (BT) using Landsat images, from which regression models were trained by using field measurements from Time Domain Reflectometer (TDR) to calculate soil moisture. Two agricultural catchments namely, Gerdau and Wipperau in Germany were satisfactorily calibrated using SWAT for daily streamflow (1975–2000) with NSE (Nash-Sutcliffe-Efficiency) >0.55 and PBIAS (Percent bias) <5.5%. The parameter uncertainty assessment during the irrigation season (Mar–Sept, 2016) for soil moisture revealed that the uncertainty band is narrow (p-factor = 0.57–0.83; r-factor = 0.52 − 1.3). Spatial and temporal patterns of soil moisture from Landsat and SWAT were evaluated by using boxplots and absolute soil moisture difference maps. Results revealed that the overall spatial and temporal patterns of boxplots matched better for the dry period (correlation, r ≥ 0.90) compared to the wet period (r ≥ 0.57). The mean absolute difference between soil moisture from Landsat and SWAT ranged between 0.9–10% for most soils. In addition to it, the soil map was refined to match soil moisture patterns shown in Landsat images for one sandy soil, which further improved the mean absolute difference (1.06–6%). The current study provides an approach to use remotely sensed soil moisture for verifying hydrological modeling results and for optimizing the parameterization of soils, which may bridge the gap between global, regional and field studies in agricultural water management.
AB - The quantification of soil moisture under different soils and crops at regional scale is a challenging task. Hence, such studies are limited by the availability of ground based measurements. The current study evaluates the spatial and temporal patterns of daily soil moisture simulated by the Soil and Water Assessment Tool (SWAT) for the upper 30 cm of the soil profile with indirect soil moisture estimates from Landsat for 2016. The Thermal Vegetation Difference Index (TVDI), was calculated based on the Normalized Difference Vegetation Index (NDVI) and the brightness temperature (BT) using Landsat images, from which regression models were trained by using field measurements from Time Domain Reflectometer (TDR) to calculate soil moisture. Two agricultural catchments namely, Gerdau and Wipperau in Germany were satisfactorily calibrated using SWAT for daily streamflow (1975–2000) with NSE (Nash-Sutcliffe-Efficiency) >0.55 and PBIAS (Percent bias) <5.5%. The parameter uncertainty assessment during the irrigation season (Mar–Sept, 2016) for soil moisture revealed that the uncertainty band is narrow (p-factor = 0.57–0.83; r-factor = 0.52 − 1.3). Spatial and temporal patterns of soil moisture from Landsat and SWAT were evaluated by using boxplots and absolute soil moisture difference maps. Results revealed that the overall spatial and temporal patterns of boxplots matched better for the dry period (correlation, r ≥ 0.90) compared to the wet period (r ≥ 0.57). The mean absolute difference between soil moisture from Landsat and SWAT ranged between 0.9–10% for most soils. In addition to it, the soil map was refined to match soil moisture patterns shown in Landsat images for one sandy soil, which further improved the mean absolute difference (1.06–6%). The current study provides an approach to use remotely sensed soil moisture for verifying hydrological modeling results and for optimizing the parameterization of soils, which may bridge the gap between global, regional and field studies in agricultural water management.
KW - Landsat
KW - NDVI
KW - Parameter uncertainty
KW - Soil moisture
KW - TDR
KW - TVDI
UR - http://www.scopus.com/inward/record.url?scp=85026899452&partnerID=8YFLogxK
U2 - 10.1016/j.agwat.2017.08.002
DO - 10.1016/j.agwat.2017.08.002
M3 - Article
AN - SCOPUS:85026899452
VL - 193
SP - 55
EP - 70
JO - Agricultural water management
JF - Agricultural water management
SN - 0378-3774
ER -