Details
Original language | English |
---|---|
Article number | 012014 |
Journal | IOP Conference Series: Materials Science and Engineering |
Volume | 159 |
Issue number | 1 |
Publication status | Published - Dec 2016 |
Event | International Deep Drawing Research Group Conference on Challenges in Forming High-Strength Sheets, IDDRG 2016 - Linz, Austria Duration: 12 Jun 2016 → 15 Jun 2016 |
Abstract
The paper presents results of evaluation of common tests for fracture characterization of advanced high-strength sheet steels with the help of the FEA. The tests include three in-plane shear tests, two uniaxial tension tests, two plane strain tension tests and two equibiaxial tension tests. Three high-strength steels with different yield loci, strain hardening rates and strengths in three different thicknesses each were used. The evaluation was performed based on the spatial distribution of the equivalent plastic strain and damage variable in the specimen at the moment of crack initiation as well as on the time variation of the stress state at the crack initiation location. For in-plane shear, uniaxial tension and plane strain tension, no test can be unconditionally recommended as disadvantages of all studied tests in these groups cannot be neglected. However, in each of these groups, a test can be chosen, which represents an acceptable compromise between its advantages and disadvantages: the shear test on an IFUM butterfly specimen for in-plane shear, the tensile test on a holed specimen for uniaxial tension and the tensile test on a waisted specimen for plane strain tension. On the contrary, the bulge test on a circular specimen with a punch of ø 100 mm can be unconditionally recommended for equibiaxial tension. In the future, optimisation of the studied tests for in-plane shear, uniaxial tension and plane strain tension appears to be necessary.
ASJC Scopus subject areas
- Materials Science(all)
- General Materials Science
- Engineering(all)
- General Engineering
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: IOP Conference Series: Materials Science and Engineering, Vol. 159, No. 1, 012014, 12.2016.
Research output: Contribution to journal › Conference article › Research › peer review
}
TY - JOUR
T1 - Evaluation of common tests for fracture characterisation of advanced high-strength sheet steels with the help of the FEA
AU - Peshekhodov, I.
AU - Dykiert, M.
AU - Vucetic, M.
AU - Behrens, B. A.
PY - 2016/12
Y1 - 2016/12
N2 - The paper presents results of evaluation of common tests for fracture characterization of advanced high-strength sheet steels with the help of the FEA. The tests include three in-plane shear tests, two uniaxial tension tests, two plane strain tension tests and two equibiaxial tension tests. Three high-strength steels with different yield loci, strain hardening rates and strengths in three different thicknesses each were used. The evaluation was performed based on the spatial distribution of the equivalent plastic strain and damage variable in the specimen at the moment of crack initiation as well as on the time variation of the stress state at the crack initiation location. For in-plane shear, uniaxial tension and plane strain tension, no test can be unconditionally recommended as disadvantages of all studied tests in these groups cannot be neglected. However, in each of these groups, a test can be chosen, which represents an acceptable compromise between its advantages and disadvantages: the shear test on an IFUM butterfly specimen for in-plane shear, the tensile test on a holed specimen for uniaxial tension and the tensile test on a waisted specimen for plane strain tension. On the contrary, the bulge test on a circular specimen with a punch of ø 100 mm can be unconditionally recommended for equibiaxial tension. In the future, optimisation of the studied tests for in-plane shear, uniaxial tension and plane strain tension appears to be necessary.
AB - The paper presents results of evaluation of common tests for fracture characterization of advanced high-strength sheet steels with the help of the FEA. The tests include three in-plane shear tests, two uniaxial tension tests, two plane strain tension tests and two equibiaxial tension tests. Three high-strength steels with different yield loci, strain hardening rates and strengths in three different thicknesses each were used. The evaluation was performed based on the spatial distribution of the equivalent plastic strain and damage variable in the specimen at the moment of crack initiation as well as on the time variation of the stress state at the crack initiation location. For in-plane shear, uniaxial tension and plane strain tension, no test can be unconditionally recommended as disadvantages of all studied tests in these groups cannot be neglected. However, in each of these groups, a test can be chosen, which represents an acceptable compromise between its advantages and disadvantages: the shear test on an IFUM butterfly specimen for in-plane shear, the tensile test on a holed specimen for uniaxial tension and the tensile test on a waisted specimen for plane strain tension. On the contrary, the bulge test on a circular specimen with a punch of ø 100 mm can be unconditionally recommended for equibiaxial tension. In the future, optimisation of the studied tests for in-plane shear, uniaxial tension and plane strain tension appears to be necessary.
UR - http://www.scopus.com/inward/record.url?scp=85014698371&partnerID=8YFLogxK
U2 - 10.1088/1757-899X/159/1/012014
DO - 10.1088/1757-899X/159/1/012014
M3 - Conference article
AN - SCOPUS:85014698371
VL - 159
JO - IOP Conference Series: Materials Science and Engineering
JF - IOP Conference Series: Materials Science and Engineering
SN - 1757-8981
IS - 1
M1 - 012014
T2 - International Deep Drawing Research Group Conference on Challenges in Forming High-Strength Sheets, IDDRG 2016
Y2 - 12 June 2016 through 15 June 2016
ER -