Details
Original language | English |
---|---|
Pages (from-to) | 223-228 |
Number of pages | 6 |
Journal | ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences |
Volume | 4 |
Issue number | 1W1 |
Publication status | Published - 30 May 2017 |
Event | ISPRS Hannover Workshop 2017 on High-Resolution Earth Imaging for Geospatial Information, HRIGI 2017, City Models, Roads and Traffic , CMRT 2017, Image Sequence Analysis, ISA 2017, European Calibration and Orientation Workshop, EuroCOW 2017: HRIGI - High-Resolution Earth Imaging for Geospatial Information, CMRT - City Models, Roads and Traffic, ISA - Image Sequence Analysis, EuroCOW - European Calibration and Orientation Workshop - Hannover, Hannover, Germany Duration: 6 Jun 2017 → 9 Jun 2017 |
Abstract
Masouleh is one of the ancient cities located in a high mountainous area in Gilan province of northern Iran. The region is threatened by a hazardous landslide, which was last activated in 1998, causing 32 dead and 45 injured. Significant temporal decorrelation caused by dense vegetation coverage within the landslide area makes the use of Synthetic Aperture Radar Interferometry (InSAR) for monitoring landslide movement very challenging. In this paper, we investigate the capability of three InSAR time-series techniques for evaluating creep motion on Masouleh landslide. The techniques are Persistent Scatterer Interferometry (PSI), Small BAseline Subset (SBAS) and SqueeSAR. The analysis is done using a dataset of 33 TerraSAR-X images in SpotLight (SL) mode covering a period of 15 months between June 2015 and September 2016. Results show the distinguished capability of SqueeSAR method in comparison to 2 other techniques for assessing landslide movement. The final number of scatterers in the landslide body detected by PSI and SBAS are about 70 and 120 respectively while this increases to about 345 in SqueeSAR. The coherence of interferograms improved by about 37% for SqueeSAR as compared to SBAS. The same rate of displacement was observed in those regions where all the methods were able to detect scatterers. Maximum rates of displacement detected by SqueeSAR technique in the northern edge, older and younger part of the landslide body are about -39, -65 and -22 mm/y, respectively.
Keywords
- InSAR method, Landslide, PSI, SBAS, SqueeSAR
ASJC Scopus subject areas
- Earth and Planetary Sciences(all)
- Earth and Planetary Sciences (miscellaneous)
- Environmental Science(all)
- Environmental Science (miscellaneous)
- Physics and Astronomy(all)
- Instrumentation
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Vol. 4, No. 1W1, 30.05.2017, p. 223-228.
Research output: Contribution to journal › Conference article › Research › peer review
}
TY - JOUR
T1 - EVALUATING THREE INSAR TIME-SERIES METHODS TO ASSESS CREEP MOTION, CASE STUDY
T2 - ISPRS Hannover Workshop 2017 on High-Resolution Earth Imaging for Geospatial Information, HRIGI 2017, City Models, Roads and Traffic , CMRT 2017, Image Sequence Analysis, ISA 2017, European Calibration and Orientation Workshop, EuroCOW 2017
AU - Mirzaee, S.
AU - Motagh, M.
AU - Akbari, B.
AU - Wetzel, H. U.
AU - Roessner, S.
N1 - Publisher Copyright: © 2017 Copernicus GmbH. All rights reserved. Copyright: Copyright 2019 Elsevier B.V., All rights reserved.
PY - 2017/5/30
Y1 - 2017/5/30
N2 - Masouleh is one of the ancient cities located in a high mountainous area in Gilan province of northern Iran. The region is threatened by a hazardous landslide, which was last activated in 1998, causing 32 dead and 45 injured. Significant temporal decorrelation caused by dense vegetation coverage within the landslide area makes the use of Synthetic Aperture Radar Interferometry (InSAR) for monitoring landslide movement very challenging. In this paper, we investigate the capability of three InSAR time-series techniques for evaluating creep motion on Masouleh landslide. The techniques are Persistent Scatterer Interferometry (PSI), Small BAseline Subset (SBAS) and SqueeSAR. The analysis is done using a dataset of 33 TerraSAR-X images in SpotLight (SL) mode covering a period of 15 months between June 2015 and September 2016. Results show the distinguished capability of SqueeSAR method in comparison to 2 other techniques for assessing landslide movement. The final number of scatterers in the landslide body detected by PSI and SBAS are about 70 and 120 respectively while this increases to about 345 in SqueeSAR. The coherence of interferograms improved by about 37% for SqueeSAR as compared to SBAS. The same rate of displacement was observed in those regions where all the methods were able to detect scatterers. Maximum rates of displacement detected by SqueeSAR technique in the northern edge, older and younger part of the landslide body are about -39, -65 and -22 mm/y, respectively.
AB - Masouleh is one of the ancient cities located in a high mountainous area in Gilan province of northern Iran. The region is threatened by a hazardous landslide, which was last activated in 1998, causing 32 dead and 45 injured. Significant temporal decorrelation caused by dense vegetation coverage within the landslide area makes the use of Synthetic Aperture Radar Interferometry (InSAR) for monitoring landslide movement very challenging. In this paper, we investigate the capability of three InSAR time-series techniques for evaluating creep motion on Masouleh landslide. The techniques are Persistent Scatterer Interferometry (PSI), Small BAseline Subset (SBAS) and SqueeSAR. The analysis is done using a dataset of 33 TerraSAR-X images in SpotLight (SL) mode covering a period of 15 months between June 2015 and September 2016. Results show the distinguished capability of SqueeSAR method in comparison to 2 other techniques for assessing landslide movement. The final number of scatterers in the landslide body detected by PSI and SBAS are about 70 and 120 respectively while this increases to about 345 in SqueeSAR. The coherence of interferograms improved by about 37% for SqueeSAR as compared to SBAS. The same rate of displacement was observed in those regions where all the methods were able to detect scatterers. Maximum rates of displacement detected by SqueeSAR technique in the northern edge, older and younger part of the landslide body are about -39, -65 and -22 mm/y, respectively.
KW - InSAR method
KW - Landslide
KW - PSI
KW - SBAS
KW - SqueeSAR
UR - http://www.scopus.com/inward/record.url?scp=85029774009&partnerID=8YFLogxK
U2 - 10.5194/isprs-annals-IV-1-W1-223-2017
DO - 10.5194/isprs-annals-IV-1-W1-223-2017
M3 - Conference article
AN - SCOPUS:85029774009
VL - 4
SP - 223
EP - 228
JO - ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
JF - ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences
SN - 2194-9042
IS - 1W1
Y2 - 6 June 2017 through 9 June 2017
ER -