Details
Original language | English |
---|---|
Article number | W06530 |
Journal | Water resources research |
Volume | 48 |
Issue number | 6 |
Publication status | Published - 26 Jun 2012 |
Abstract
Estimates of effective parameters for unsaturated flow models are typically based on observations taken on length scales smaller than the modeling scale. This complicates parameter estimation for heterogeneous soil structures. In this paper we attempt to account for soil structure not present in the flow model by using so-called external error models, which correct for bias in the likelihood function of a parameter estimation algorithm. The performance of external error models are investigated using data from three virtual reality experiments and one real world experiment. All experiments are multistep outflow and inflow experiments in columns packed with two sand types with different structures. First, effective parameters for equivalent homogeneous models for the different columns were estimated using soil moisture measurements taken at a few locations. This resulted in parameters that had a low predictive power for the averaged states of the soil moisture if the measurements did not adequately capture a representative elementary volume of the heterogeneous soil column. Second, parameter estimation was performed using error models that attempted to correct for bias introduced by soil structure not taken into account in the first estimation. Three different error models that required different amounts of prior knowledge about the heterogeneous structure were considered. The results showed that the introduction of an error model can help to obtain effective parameters with more predictive power with respect to the average soil water content in the system. This was especially true when the dynamic behavior of the flow process was analyzed.
ASJC Scopus subject areas
- Environmental Science(all)
- Water Science and Technology
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Water resources research, Vol. 48, No. 6, W06530, 26.06.2012.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Estimating effective model parameters for heterogeneous unsaturated flow using error models for bias correction
AU - Erdal, D.
AU - Neuweiler, Insa
AU - Huisman, J. A.
PY - 2012/6/26
Y1 - 2012/6/26
N2 - Estimates of effective parameters for unsaturated flow models are typically based on observations taken on length scales smaller than the modeling scale. This complicates parameter estimation for heterogeneous soil structures. In this paper we attempt to account for soil structure not present in the flow model by using so-called external error models, which correct for bias in the likelihood function of a parameter estimation algorithm. The performance of external error models are investigated using data from three virtual reality experiments and one real world experiment. All experiments are multistep outflow and inflow experiments in columns packed with two sand types with different structures. First, effective parameters for equivalent homogeneous models for the different columns were estimated using soil moisture measurements taken at a few locations. This resulted in parameters that had a low predictive power for the averaged states of the soil moisture if the measurements did not adequately capture a representative elementary volume of the heterogeneous soil column. Second, parameter estimation was performed using error models that attempted to correct for bias introduced by soil structure not taken into account in the first estimation. Three different error models that required different amounts of prior knowledge about the heterogeneous structure were considered. The results showed that the introduction of an error model can help to obtain effective parameters with more predictive power with respect to the average soil water content in the system. This was especially true when the dynamic behavior of the flow process was analyzed.
AB - Estimates of effective parameters for unsaturated flow models are typically based on observations taken on length scales smaller than the modeling scale. This complicates parameter estimation for heterogeneous soil structures. In this paper we attempt to account for soil structure not present in the flow model by using so-called external error models, which correct for bias in the likelihood function of a parameter estimation algorithm. The performance of external error models are investigated using data from three virtual reality experiments and one real world experiment. All experiments are multistep outflow and inflow experiments in columns packed with two sand types with different structures. First, effective parameters for equivalent homogeneous models for the different columns were estimated using soil moisture measurements taken at a few locations. This resulted in parameters that had a low predictive power for the averaged states of the soil moisture if the measurements did not adequately capture a representative elementary volume of the heterogeneous soil column. Second, parameter estimation was performed using error models that attempted to correct for bias introduced by soil structure not taken into account in the first estimation. Three different error models that required different amounts of prior knowledge about the heterogeneous structure were considered. The results showed that the introduction of an error model can help to obtain effective parameters with more predictive power with respect to the average soil water content in the system. This was especially true when the dynamic behavior of the flow process was analyzed.
UR - http://www.scopus.com/inward/record.url?scp=84862870886&partnerID=8YFLogxK
U2 - 10.1029/2011WR011062
DO - 10.1029/2011WR011062
M3 - Article
AN - SCOPUS:84862870886
VL - 48
JO - Water resources research
JF - Water resources research
SN - 0043-1397
IS - 6
M1 - W06530
ER -