Details
Original language | English |
---|---|
Pages (from-to) | 67-70 |
Number of pages | 4 |
Journal | IT - Information Technology |
Volume | 64 |
Issue number | 1-2 |
Publication status | Published - 1 Apr 2022 |
Abstract
Data is being produced at an intractable pace. At the same time, there is an insatiable interest in using such data for use cases that span all imaginable domains, including health, climate, business, and gaming. Beyond the novel socio-technical challenges that surround data-driven innovations, there are still open data processing challenges that impede the usability of data-driven techniques. It is commonly acknowledged that overcoming heterogeneity of data with regard to syntax and semantics to combine various sources for a common goal is a major bottleneck. Furthermore, the quality of such data is always under question as the data science pipelines today are highly ad-hoc and without the necessary care for provenance. Finally, quality criteria that go beyond the syntactical and semantic correctness of individual values but also incorporate population-level constraints, such as equal parity and opportunity with regard to protected groups, play a more and more important role in this process. Traditional research on data integration was focused on post-merger integration of companies, where customer or product databases had to be integrated. While this is often hard enough, today the challenges aggravate because of the fact that more stakeholders are using data analytics tools to derive domain-specific insights. I call this phenomenon the democratization of data science, a process, which is both challenging and necessary. Novel systems need to be user-friendly in a way that not only trained database admins can handle them but also less computer science savvy stakeholders. Thus, our research focuses on scalable example-driven techniques for data preparation and curation. Furthermore, we believe that it is important to educate the breadth of society on implications of a data-driven world and actively promote the concept of data literacy as a fundamental competence.
Keywords
- Data cleaning, Data discovery, Data literacy, Data preparation, Data profiling, Feature engineering
ASJC Scopus subject areas
- Computer Science(all)
- General Computer Science
Sustainable Development Goals
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: IT - Information Technology, Vol. 64, No. 1-2, 01.04.2022, p. 67-70.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Enabling data-centric AI through data quality management and data literacy
AU - Abedjan, Ziawasch
PY - 2022/4/1
Y1 - 2022/4/1
N2 - Data is being produced at an intractable pace. At the same time, there is an insatiable interest in using such data for use cases that span all imaginable domains, including health, climate, business, and gaming. Beyond the novel socio-technical challenges that surround data-driven innovations, there are still open data processing challenges that impede the usability of data-driven techniques. It is commonly acknowledged that overcoming heterogeneity of data with regard to syntax and semantics to combine various sources for a common goal is a major bottleneck. Furthermore, the quality of such data is always under question as the data science pipelines today are highly ad-hoc and without the necessary care for provenance. Finally, quality criteria that go beyond the syntactical and semantic correctness of individual values but also incorporate population-level constraints, such as equal parity and opportunity with regard to protected groups, play a more and more important role in this process. Traditional research on data integration was focused on post-merger integration of companies, where customer or product databases had to be integrated. While this is often hard enough, today the challenges aggravate because of the fact that more stakeholders are using data analytics tools to derive domain-specific insights. I call this phenomenon the democratization of data science, a process, which is both challenging and necessary. Novel systems need to be user-friendly in a way that not only trained database admins can handle them but also less computer science savvy stakeholders. Thus, our research focuses on scalable example-driven techniques for data preparation and curation. Furthermore, we believe that it is important to educate the breadth of society on implications of a data-driven world and actively promote the concept of data literacy as a fundamental competence.
AB - Data is being produced at an intractable pace. At the same time, there is an insatiable interest in using such data for use cases that span all imaginable domains, including health, climate, business, and gaming. Beyond the novel socio-technical challenges that surround data-driven innovations, there are still open data processing challenges that impede the usability of data-driven techniques. It is commonly acknowledged that overcoming heterogeneity of data with regard to syntax and semantics to combine various sources for a common goal is a major bottleneck. Furthermore, the quality of such data is always under question as the data science pipelines today are highly ad-hoc and without the necessary care for provenance. Finally, quality criteria that go beyond the syntactical and semantic correctness of individual values but also incorporate population-level constraints, such as equal parity and opportunity with regard to protected groups, play a more and more important role in this process. Traditional research on data integration was focused on post-merger integration of companies, where customer or product databases had to be integrated. While this is often hard enough, today the challenges aggravate because of the fact that more stakeholders are using data analytics tools to derive domain-specific insights. I call this phenomenon the democratization of data science, a process, which is both challenging and necessary. Novel systems need to be user-friendly in a way that not only trained database admins can handle them but also less computer science savvy stakeholders. Thus, our research focuses on scalable example-driven techniques for data preparation and curation. Furthermore, we believe that it is important to educate the breadth of society on implications of a data-driven world and actively promote the concept of data literacy as a fundamental competence.
KW - Data cleaning
KW - Data discovery
KW - Data literacy
KW - Data preparation
KW - Data profiling
KW - Feature engineering
UR - http://www.scopus.com/inward/record.url?scp=85126048406&partnerID=8YFLogxK
U2 - 10.1515/itit-2021-0048
DO - 10.1515/itit-2021-0048
M3 - Article
AN - SCOPUS:85126048406
VL - 64
SP - 67
EP - 70
JO - IT - Information Technology
JF - IT - Information Technology
SN - 1611-2776
IS - 1-2
ER -