Details
Original language | English |
---|---|
Title of host publication | Lecture Notes in Production Engineering |
Publisher | Springer Nature |
Pages | 307-313 |
Number of pages | 7 |
ISBN (electronic) | 978-3-031-18318-8 |
ISBN (print) | 978-3-031-18317-1 |
Publication status | Published - 2 Feb 2023 |
Publication series
Name | Lecture Notes in Production Engineering |
---|---|
Volume | Part F1163 |
ISSN (Print) | 2194-0525 |
ISSN (electronic) | 2194-0533 |
Abstract
At present, optical components are costly and complex to manufacture. The costs often are a decisive factor in developing and manufacturing of optical components and sensors. The goal of the cluster of excellence PhoenixD, a major cross-disciplinary initiative, is the time- and cost-efficient production of optical systems. One promising approach is the accurate molding of micro- and nanostructures in a precisely controllable embossing process. Embossing as a manufacturing process for structured functional surfaces enables high output rates at low costs per component. However, embossing of micro- and nanostructures in particular requires high demands concerning the precision of the used machines and tools as well as on the precision of the positioning accuracy of actuated active parts. Machine- and tool-related disturbances are often unavoidable—these include guide inaccuracies, bearing clearances or temperature-related expansions in the powertrain. All these effects can be counteracted by means of an active process control. For this reason an embossing device is being developed which enables the die to be positioned precisely so that micro- and nanostructures can be transferred reproducibly with a high quality. In addition to the high positioning accuracy, this embossing device should also provide high embossing forces. This leads to an expansion of the material spectrum in microembossing and enables a variety of new applications. In this paper various concepts are presented and analyzed concerning their suitability for the precise embossing of fine structures by means of multi-body-simulation with regard to their deformation under load. In addition, a test bench of an electromagnet-spring system is introduced.
Keywords
- Embossing, High accuracy, Nanostructures
ASJC Scopus subject areas
- Engineering(all)
- Industrial and Manufacturing Engineering
- Economics, Econometrics and Finance(all)
- Economics, Econometrics and Finance (miscellaneous)
- Engineering(all)
- Safety, Risk, Reliability and Quality
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
Lecture Notes in Production Engineering. Springer Nature, 2023. p. 307-313 (Lecture Notes in Production Engineering; Vol. Part F1163).
Research output: Chapter in book/report/conference proceeding › Contribution to book/anthology › Research › peer review
}
TY - CHAP
T1 - Embossing Nanostructures
AU - Schmiele, D.
AU - Krimm, R.
AU - Behrens, B. A.
N1 - Funding Information: Acknowledgement. Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy within the Cluster of Excellence PhoenixD (EXC 2122, Project ID 390833453).
PY - 2023/2/2
Y1 - 2023/2/2
N2 - At present, optical components are costly and complex to manufacture. The costs often are a decisive factor in developing and manufacturing of optical components and sensors. The goal of the cluster of excellence PhoenixD, a major cross-disciplinary initiative, is the time- and cost-efficient production of optical systems. One promising approach is the accurate molding of micro- and nanostructures in a precisely controllable embossing process. Embossing as a manufacturing process for structured functional surfaces enables high output rates at low costs per component. However, embossing of micro- and nanostructures in particular requires high demands concerning the precision of the used machines and tools as well as on the precision of the positioning accuracy of actuated active parts. Machine- and tool-related disturbances are often unavoidable—these include guide inaccuracies, bearing clearances or temperature-related expansions in the powertrain. All these effects can be counteracted by means of an active process control. For this reason an embossing device is being developed which enables the die to be positioned precisely so that micro- and nanostructures can be transferred reproducibly with a high quality. In addition to the high positioning accuracy, this embossing device should also provide high embossing forces. This leads to an expansion of the material spectrum in microembossing and enables a variety of new applications. In this paper various concepts are presented and analyzed concerning their suitability for the precise embossing of fine structures by means of multi-body-simulation with regard to their deformation under load. In addition, a test bench of an electromagnet-spring system is introduced.
AB - At present, optical components are costly and complex to manufacture. The costs often are a decisive factor in developing and manufacturing of optical components and sensors. The goal of the cluster of excellence PhoenixD, a major cross-disciplinary initiative, is the time- and cost-efficient production of optical systems. One promising approach is the accurate molding of micro- and nanostructures in a precisely controllable embossing process. Embossing as a manufacturing process for structured functional surfaces enables high output rates at low costs per component. However, embossing of micro- and nanostructures in particular requires high demands concerning the precision of the used machines and tools as well as on the precision of the positioning accuracy of actuated active parts. Machine- and tool-related disturbances are often unavoidable—these include guide inaccuracies, bearing clearances or temperature-related expansions in the powertrain. All these effects can be counteracted by means of an active process control. For this reason an embossing device is being developed which enables the die to be positioned precisely so that micro- and nanostructures can be transferred reproducibly with a high quality. In addition to the high positioning accuracy, this embossing device should also provide high embossing forces. This leads to an expansion of the material spectrum in microembossing and enables a variety of new applications. In this paper various concepts are presented and analyzed concerning their suitability for the precise embossing of fine structures by means of multi-body-simulation with regard to their deformation under load. In addition, a test bench of an electromagnet-spring system is introduced.
KW - Embossing
KW - High accuracy
KW - Nanostructures
UR - http://www.scopus.com/inward/record.url?scp=85166658016&partnerID=8YFLogxK
U2 - 10.1007/978-3-031-18318-8_32
DO - 10.1007/978-3-031-18318-8_32
M3 - Contribution to book/anthology
AN - SCOPUS:85166658016
SN - 978-3-031-18317-1
T3 - Lecture Notes in Production Engineering
SP - 307
EP - 313
BT - Lecture Notes in Production Engineering
PB - Springer Nature
ER -