Details
Original language | English |
---|---|
Title of host publication | Mordell–Weil Lattices |
Publisher | Springer Singapore |
Pages | 287-315 |
Number of pages | 29 |
Edition | 1. |
ISBN (electronic) | 978-981-32-9301-4 |
ISBN (print) | 978-981-32-9300-7, 978-981-32-9303-8 |
Publication status | Published - 17 Oct 2019 |
Publication series
Name | Ergebnisse der Mathematik und ihrer Grenzgebiete - 3. Folge / A Series of Modern Surveys in Mathematics |
---|---|
Volume | 70 |
ISSN (Print) | 0071-1136 |
Abstract
In this and the next chapter, we concentrate on the case of geometric genus one, that is, elliptic K3 surfaces. These offer many new interesting phenomena, some of which we are going to discuss in detail.
ASJC Scopus subject areas
- Mathematics(all)
- General Mathematics
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
Mordell–Weil Lattices . 1. ed. Springer Singapore, 2019. p. 287-315 (Ergebnisse der Mathematik und ihrer Grenzgebiete - 3. Folge / A Series of Modern Surveys in Mathematics; Vol. 70).
Research output: Chapter in book/report/conference proceeding › Contribution to book/anthology › Research › peer review
}
TY - CHAP
T1 - Elliptic K3 Surfaces
T2 - Basics
AU - Schütt, Matthias
AU - Shioda, Tetsuji
PY - 2019/10/17
Y1 - 2019/10/17
N2 - In this and the next chapter, we concentrate on the case of geometric genus one, that is, elliptic K3 surfaces. These offer many new interesting phenomena, some of which we are going to discuss in detail.
AB - In this and the next chapter, we concentrate on the case of geometric genus one, that is, elliptic K3 surfaces. These offer many new interesting phenomena, some of which we are going to discuss in detail.
UR - http://www.scopus.com/inward/record.url?scp=85074667742&partnerID=8YFLogxK
U2 - 10.1007/978-981-32-9301-4_11
DO - 10.1007/978-981-32-9301-4_11
M3 - Contribution to book/anthology
AN - SCOPUS:85074667742
SN - 978-981-32-9300-7
SN - 978-981-32-9303-8
T3 - Ergebnisse der Mathematik und ihrer Grenzgebiete - 3. Folge / A Series of Modern Surveys in Mathematics
SP - 287
EP - 315
BT - Mordell–Weil Lattices
PB - Springer Singapore
ER -