Elliptic K3 Surfaces: Basics

Research output: Chapter in book/report/conference proceedingContribution to book/anthologyResearchpeer review

Authors

Research Organisations

External Research Organisations

  • Rikkyo University
View graph of relations

Details

Original languageEnglish
Title of host publicationMordell–Weil Lattices
PublisherSpringer Singapore
Pages287-315
Number of pages29
Edition1.
ISBN (electronic)978-981-32-9301-4
ISBN (print)978-981-32-9300-7, 978-981-32-9303-8
Publication statusPublished - 17 Oct 2019

Publication series

NameErgebnisse der Mathematik und ihrer Grenzgebiete - 3. Folge / A Series of Modern Surveys in Mathematics
Volume70
ISSN (Print)0071-1136

Abstract

In this and the next chapter, we concentrate on the case of geometric genus one, that is, elliptic K3 surfaces. These offer many new interesting phenomena, some of which we are going to discuss in detail.

ASJC Scopus subject areas

Cite this

Elliptic K3 Surfaces: Basics. / Schütt, Matthias; Shioda, Tetsuji.
Mordell–Weil Lattices . 1. ed. Springer Singapore, 2019. p. 287-315 (Ergebnisse der Mathematik und ihrer Grenzgebiete - 3. Folge / A Series of Modern Surveys in Mathematics; Vol. 70).

Research output: Chapter in book/report/conference proceedingContribution to book/anthologyResearchpeer review

Schütt, M & Shioda, T 2019, Elliptic K3 Surfaces: Basics. in Mordell–Weil Lattices . 1. edn, Ergebnisse der Mathematik und ihrer Grenzgebiete - 3. Folge / A Series of Modern Surveys in Mathematics, vol. 70, Springer Singapore, pp. 287-315. https://doi.org/10.1007/978-981-32-9301-4_11
Schütt, M., & Shioda, T. (2019). Elliptic K3 Surfaces: Basics. In Mordell–Weil Lattices (1. ed., pp. 287-315). (Ergebnisse der Mathematik und ihrer Grenzgebiete - 3. Folge / A Series of Modern Surveys in Mathematics; Vol. 70). Springer Singapore. https://doi.org/10.1007/978-981-32-9301-4_11
Schütt M, Shioda T. Elliptic K3 Surfaces: Basics. In Mordell–Weil Lattices . 1. ed. Springer Singapore. 2019. p. 287-315. (Ergebnisse der Mathematik und ihrer Grenzgebiete - 3. Folge / A Series of Modern Surveys in Mathematics). doi: 10.1007/978-981-32-9301-4_11
Schütt, Matthias ; Shioda, Tetsuji. / Elliptic K3 Surfaces : Basics. Mordell–Weil Lattices . 1. ed. Springer Singapore, 2019. pp. 287-315 (Ergebnisse der Mathematik und ihrer Grenzgebiete - 3. Folge / A Series of Modern Surveys in Mathematics).
Download
@inbook{4d5bbb84f69c45baa2c27a580e4adde1,
title = "Elliptic K3 Surfaces: Basics",
abstract = "In this and the next chapter, we concentrate on the case of geometric genus one, that is, elliptic K3 surfaces. These offer many new interesting phenomena, some of which we are going to discuss in detail.",
author = "Matthias Sch{\"u}tt and Tetsuji Shioda",
year = "2019",
month = oct,
day = "17",
doi = "10.1007/978-981-32-9301-4_11",
language = "English",
isbn = "978-981-32-9300-7",
series = "Ergebnisse der Mathematik und ihrer Grenzgebiete - 3. Folge / A Series of Modern Surveys in Mathematics",
publisher = "Springer Singapore",
pages = "287--315",
booktitle = "Mordell–Weil Lattices",
address = "Singapore",
edition = "1.",

}

Download

TY - CHAP

T1 - Elliptic K3 Surfaces

T2 - Basics

AU - Schütt, Matthias

AU - Shioda, Tetsuji

PY - 2019/10/17

Y1 - 2019/10/17

N2 - In this and the next chapter, we concentrate on the case of geometric genus one, that is, elliptic K3 surfaces. These offer many new interesting phenomena, some of which we are going to discuss in detail.

AB - In this and the next chapter, we concentrate on the case of geometric genus one, that is, elliptic K3 surfaces. These offer many new interesting phenomena, some of which we are going to discuss in detail.

UR - http://www.scopus.com/inward/record.url?scp=85074667742&partnerID=8YFLogxK

U2 - 10.1007/978-981-32-9301-4_11

DO - 10.1007/978-981-32-9301-4_11

M3 - Contribution to book/anthology

AN - SCOPUS:85074667742

SN - 978-981-32-9300-7

SN - 978-981-32-9303-8

T3 - Ergebnisse der Mathematik und ihrer Grenzgebiete - 3. Folge / A Series of Modern Surveys in Mathematics

SP - 287

EP - 315

BT - Mordell–Weil Lattices

PB - Springer Singapore

ER -

By the same author(s)