Details
Original language | English |
---|---|
Title of host publication | Mordell–Weil Lattices |
Publisher | Springer Singapore |
Pages | 317-353 |
Number of pages | 37 |
Edition | 1. |
ISBN (electronic) | 978-981-32-9301-4 |
ISBN (print) | 978-981-32-9300-7, 978-981-32-9303-8 |
Publication status | Published - 17 Oct 2019 |
Publication series
Name | Ergebnisse der Mathematik und ihrer Grenzgebiete - 3. Folge / A Series of Modern Surveys in Mathematics |
---|---|
Volume | 70 |
ISSN (Print) | 0071-1136 |
ISSN (electronic) | 2197-5655 |
Abstract
In this chapter, we discuss more specific topics from the theory of elliptic K3 surfaces which often have a more arithmetic flavour. Our focus lies especially on three subjects: Shioda–Inose structures and Mordell–Weil ranks, the problem of classifying all elliptic fibrations on a given K3 surface, and supersingular K3 surfaces.
ASJC Scopus subject areas
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
Mordell–Weil Lattices . 1. ed. Springer Singapore, 2019. p. 317-353 (Ergebnisse der Mathematik und ihrer Grenzgebiete - 3. Folge / A Series of Modern Surveys in Mathematics; Vol. 70).
Research output: Chapter in book/report/conference proceeding › Contribution to book/anthology › Research › peer review
}
TY - CHAP
T1 - Elliptic K3 Surface
T2 - Special Topics
AU - Schütt, Matthias
AU - Shioda, Tetsuji
PY - 2019/10/17
Y1 - 2019/10/17
N2 - In this chapter, we discuss more specific topics from the theory of elliptic K3 surfaces which often have a more arithmetic flavour. Our focus lies especially on three subjects: Shioda–Inose structures and Mordell–Weil ranks, the problem of classifying all elliptic fibrations on a given K3 surface, and supersingular K3 surfaces.
AB - In this chapter, we discuss more specific topics from the theory of elliptic K3 surfaces which often have a more arithmetic flavour. Our focus lies especially on three subjects: Shioda–Inose structures and Mordell–Weil ranks, the problem of classifying all elliptic fibrations on a given K3 surface, and supersingular K3 surfaces.
UR - http://www.scopus.com/inward/record.url?scp=85074667377&partnerID=8YFLogxK
U2 - 10.1007/978-981-32-9301-4_12
DO - 10.1007/978-981-32-9301-4_12
M3 - Contribution to book/anthology
AN - SCOPUS:85074667377
SN - 978-981-32-9300-7
SN - 978-981-32-9303-8
T3 - Ergebnisse der Mathematik und ihrer Grenzgebiete - 3. Folge / A Series of Modern Surveys in Mathematics
SP - 317
EP - 353
BT - Mordell–Weil Lattices
PB - Springer Singapore
ER -