Elliptic K3 Surface: Special Topics

Research output: Chapter in book/report/conference proceedingContribution to book/anthologyResearchpeer review

Authors

Research Organisations

External Research Organisations

  • Rikkyo University
View graph of relations

Details

Original languageEnglish
Title of host publicationMordell–Weil Lattices
PublisherSpringer Singapore
Pages317-353
Number of pages37
Edition1.
ISBN (electronic)978-981-32-9301-4
ISBN (print)978-981-32-9300-7, 978-981-32-9303-8
Publication statusPublished - 17 Oct 2019

Publication series

NameErgebnisse der Mathematik und ihrer Grenzgebiete - 3. Folge / A Series of Modern Surveys in Mathematics
Volume70
ISSN (Print)0071-1136
ISSN (electronic)2197-5655

Abstract

In this chapter, we discuss more specific topics from the theory of elliptic K3 surfaces which often have a more arithmetic flavour. Our focus lies especially on three subjects: Shioda–Inose structures and Mordell–Weil ranks, the problem of classifying all elliptic fibrations on a given K3 surface, and supersingular K3 surfaces.

ASJC Scopus subject areas

Cite this

Elliptic K3 Surface: Special Topics. / Schütt, Matthias; Shioda, Tetsuji.
Mordell–Weil Lattices . 1. ed. Springer Singapore, 2019. p. 317-353 (Ergebnisse der Mathematik und ihrer Grenzgebiete - 3. Folge / A Series of Modern Surveys in Mathematics; Vol. 70).

Research output: Chapter in book/report/conference proceedingContribution to book/anthologyResearchpeer review

Schütt, M & Shioda, T 2019, Elliptic K3 Surface: Special Topics. in Mordell–Weil Lattices . 1. edn, Ergebnisse der Mathematik und ihrer Grenzgebiete - 3. Folge / A Series of Modern Surveys in Mathematics, vol. 70, Springer Singapore, pp. 317-353. https://doi.org/10.1007/978-981-32-9301-4_12
Schütt, M., & Shioda, T. (2019). Elliptic K3 Surface: Special Topics. In Mordell–Weil Lattices (1. ed., pp. 317-353). (Ergebnisse der Mathematik und ihrer Grenzgebiete - 3. Folge / A Series of Modern Surveys in Mathematics; Vol. 70). Springer Singapore. https://doi.org/10.1007/978-981-32-9301-4_12
Schütt M, Shioda T. Elliptic K3 Surface: Special Topics. In Mordell–Weil Lattices . 1. ed. Springer Singapore. 2019. p. 317-353. (Ergebnisse der Mathematik und ihrer Grenzgebiete - 3. Folge / A Series of Modern Surveys in Mathematics). doi: 10.1007/978-981-32-9301-4_12
Schütt, Matthias ; Shioda, Tetsuji. / Elliptic K3 Surface : Special Topics. Mordell–Weil Lattices . 1. ed. Springer Singapore, 2019. pp. 317-353 (Ergebnisse der Mathematik und ihrer Grenzgebiete - 3. Folge / A Series of Modern Surveys in Mathematics).
Download
@inbook{c31fb555dbe240b886fb054a65bc835e,
title = "Elliptic K3 Surface: Special Topics",
abstract = "In this chapter, we discuss more specific topics from the theory of elliptic K3 surfaces which often have a more arithmetic flavour. Our focus lies especially on three subjects: Shioda–Inose structures and Mordell–Weil ranks, the problem of classifying all elliptic fibrations on a given K3 surface, and supersingular K3 surfaces.",
author = "Matthias Sch{\"u}tt and Tetsuji Shioda",
year = "2019",
month = oct,
day = "17",
doi = "10.1007/978-981-32-9301-4_12",
language = "English",
isbn = "978-981-32-9300-7",
series = "Ergebnisse der Mathematik und ihrer Grenzgebiete - 3. Folge / A Series of Modern Surveys in Mathematics",
publisher = "Springer Singapore",
pages = "317--353",
booktitle = "Mordell–Weil Lattices",
address = "Singapore",
edition = "1.",

}

Download

TY - CHAP

T1 - Elliptic K3 Surface

T2 - Special Topics

AU - Schütt, Matthias

AU - Shioda, Tetsuji

PY - 2019/10/17

Y1 - 2019/10/17

N2 - In this chapter, we discuss more specific topics from the theory of elliptic K3 surfaces which often have a more arithmetic flavour. Our focus lies especially on three subjects: Shioda–Inose structures and Mordell–Weil ranks, the problem of classifying all elliptic fibrations on a given K3 surface, and supersingular K3 surfaces.

AB - In this chapter, we discuss more specific topics from the theory of elliptic K3 surfaces which often have a more arithmetic flavour. Our focus lies especially on three subjects: Shioda–Inose structures and Mordell–Weil ranks, the problem of classifying all elliptic fibrations on a given K3 surface, and supersingular K3 surfaces.

UR - http://www.scopus.com/inward/record.url?scp=85074667377&partnerID=8YFLogxK

U2 - 10.1007/978-981-32-9301-4_12

DO - 10.1007/978-981-32-9301-4_12

M3 - Contribution to book/anthology

AN - SCOPUS:85074667377

SN - 978-981-32-9300-7

SN - 978-981-32-9303-8

T3 - Ergebnisse der Mathematik und ihrer Grenzgebiete - 3. Folge / A Series of Modern Surveys in Mathematics

SP - 317

EP - 353

BT - Mordell–Weil Lattices

PB - Springer Singapore

ER -

By the same author(s)