Elliptic Curves

Research output: Chapter in book/report/conference proceedingContribution to book/anthologyResearchpeer review

Authors

Research Organisations

External Research Organisations

  • Rikkyo University
View graph of relations

Details

Original languageEnglish
Title of host publicationMordell–Weil Lattices
PublisherSpringer Singapore
Pages39-56
Number of pages18
Edition1.
ISBN (electronic)978-981-32-9301-4
ISBN (print)978-981-32-9300-7, 978-981-32-9303-8
Publication statusPublished - 17 Oct 2019

Publication series

NameErgebnisse der Mathematik und ihrer Grenzgebiete - 3. Folge / A Series of Modern Surveys in Mathematics
Volume70
ISSN (Print)0071-1136
ISSN (electronic)2197-5655

Abstract

We review the definitions of elliptic curves and the group law. Then we state the Mordell–Weil theorem for elliptic curves over a number field and discuss degenerations of elliptic curves as a step towards the introduction of elliptic surfaces.

ASJC Scopus subject areas

Cite this

Elliptic Curves. / Schütt, Matthias; Shioda, Tetsuji.
Mordell–Weil Lattices . 1. ed. Springer Singapore, 2019. p. 39-56 (Ergebnisse der Mathematik und ihrer Grenzgebiete - 3. Folge / A Series of Modern Surveys in Mathematics; Vol. 70).

Research output: Chapter in book/report/conference proceedingContribution to book/anthologyResearchpeer review

Schütt, M & Shioda, T 2019, Elliptic Curves. in Mordell–Weil Lattices . 1. edn, Ergebnisse der Mathematik und ihrer Grenzgebiete - 3. Folge / A Series of Modern Surveys in Mathematics, vol. 70, Springer Singapore, pp. 39-56. https://doi.org/10.1007/978-981-32-9301-4_3
Schütt, M., & Shioda, T. (2019). Elliptic Curves. In Mordell–Weil Lattices (1. ed., pp. 39-56). (Ergebnisse der Mathematik und ihrer Grenzgebiete - 3. Folge / A Series of Modern Surveys in Mathematics; Vol. 70). Springer Singapore. https://doi.org/10.1007/978-981-32-9301-4_3
Schütt M, Shioda T. Elliptic Curves. In Mordell–Weil Lattices . 1. ed. Springer Singapore. 2019. p. 39-56. (Ergebnisse der Mathematik und ihrer Grenzgebiete - 3. Folge / A Series of Modern Surveys in Mathematics). doi: 10.1007/978-981-32-9301-4_3
Schütt, Matthias ; Shioda, Tetsuji. / Elliptic Curves. Mordell–Weil Lattices . 1. ed. Springer Singapore, 2019. pp. 39-56 (Ergebnisse der Mathematik und ihrer Grenzgebiete - 3. Folge / A Series of Modern Surveys in Mathematics).
Download
@inbook{f97d2491642f4cf4817cabaf2418a788,
title = "Elliptic Curves",
abstract = "We review the definitions of elliptic curves and the group law. Then we state the Mordell–Weil theorem for elliptic curves over a number field and discuss degenerations of elliptic curves as a step towards the introduction of elliptic surfaces.",
author = "Matthias Sch{\"u}tt and Tetsuji Shioda",
year = "2019",
month = oct,
day = "17",
doi = "10.1007/978-981-32-9301-4_3",
language = "English",
isbn = "978-981-32-9300-7",
series = "Ergebnisse der Mathematik und ihrer Grenzgebiete - 3. Folge / A Series of Modern Surveys in Mathematics",
publisher = "Springer Singapore",
pages = "39--56",
booktitle = "Mordell–Weil Lattices",
address = "Singapore",
edition = "1.",

}

Download

TY - CHAP

T1 - Elliptic Curves

AU - Schütt, Matthias

AU - Shioda, Tetsuji

PY - 2019/10/17

Y1 - 2019/10/17

N2 - We review the definitions of elliptic curves and the group law. Then we state the Mordell–Weil theorem for elliptic curves over a number field and discuss degenerations of elliptic curves as a step towards the introduction of elliptic surfaces.

AB - We review the definitions of elliptic curves and the group law. Then we state the Mordell–Weil theorem for elliptic curves over a number field and discuss degenerations of elliptic curves as a step towards the introduction of elliptic surfaces.

UR - http://www.scopus.com/inward/record.url?scp=85074664064&partnerID=8YFLogxK

U2 - 10.1007/978-981-32-9301-4_3

DO - 10.1007/978-981-32-9301-4_3

M3 - Contribution to book/anthology

AN - SCOPUS:85074664064

SN - 978-981-32-9300-7

SN - 978-981-32-9303-8

T3 - Ergebnisse der Mathematik und ihrer Grenzgebiete - 3. Folge / A Series of Modern Surveys in Mathematics

SP - 39

EP - 56

BT - Mordell–Weil Lattices

PB - Springer Singapore

ER -

By the same author(s)