Elektromechanischer Mikro-Biegeaktor als optischer Shutter

Research output: Chapter in book/report/conference proceedingConference contributionResearchpeer review

Authors

External Research Organisations

  • St. Petersburg State Polytechnical University
View graph of relations

Details

Translated title of the contributionElectromechanical bending microactuator as optical shutter
Original languageGerman
Title of host publicationMikroSystemTechnik Kongress 2017 "MEMS, Mikroelektronik, Systeme", Proceedings
PublisherVDE Verlag GmbH
Pages519-522
Number of pages4
ISBN (electronic)9783800744916
Publication statusPublished - 2017
EventMikroSystemTechnik Kongress 2017: MEMS, Mikroelektronik, Systeme - München, Germany
Duration: 23 Oct 201725 Oct 2017

Publication series

NameMikroSystemTechnik Kongress 2017 "MEMS, Mikroelektronik, Systeme", Proceedings

Abstract

In this work is presented the design, fabrication methods, and characterization of a thin film electromechanical optical shutter. The working stroke of the optical channel is provided by a multilayer film structure of a cantilever, whose profile is determined by the residual internal stresses of the films. In the process of design analysis were determined the parameters of the strained structural layers, the temperature dependence of the curvature, the undamped natural frequencies and the damping parameters of the film cantilever. The experimental results fit the theoretical data closely. The developed control circuit is designed to compensate for the induced dielectric polarization and prevents a rise of the control voltage as well as the sticking effect of the cantilever. The presented design allows the development of a simple and effective electromechanical optical shutter with a modulation aperture height larger than 1.4 mm.

ASJC Scopus subject areas

Cite this

Elektromechanischer Mikro-Biegeaktor als optischer Shutter. / Pyatishev, E.; Wurz, Marc; Enns, Y. et al.
MikroSystemTechnik Kongress 2017 "MEMS, Mikroelektronik, Systeme", Proceedings. VDE Verlag GmbH, 2017. p. 519-522 (MikroSystemTechnik Kongress 2017 "MEMS, Mikroelektronik, Systeme", Proceedings).

Research output: Chapter in book/report/conference proceedingConference contributionResearchpeer review

Pyatishev, E, Wurz, M, Enns, Y, Glukhovskoy, A, Fischer, E, Odintsov, A & Kleimanov, R 2017, Elektromechanischer Mikro-Biegeaktor als optischer Shutter. in MikroSystemTechnik Kongress 2017 "MEMS, Mikroelektronik, Systeme", Proceedings. MikroSystemTechnik Kongress 2017 "MEMS, Mikroelektronik, Systeme", Proceedings, VDE Verlag GmbH, pp. 519-522, MikroSystemTechnik Kongress 2017: MEMS, Mikroelektronik, Systeme, München, Bavaria, Germany, 23 Oct 2017.
Pyatishev, E., Wurz, M., Enns, Y., Glukhovskoy, A., Fischer, E., Odintsov, A., & Kleimanov, R. (2017). Elektromechanischer Mikro-Biegeaktor als optischer Shutter. In MikroSystemTechnik Kongress 2017 "MEMS, Mikroelektronik, Systeme", Proceedings (pp. 519-522). (MikroSystemTechnik Kongress 2017 "MEMS, Mikroelektronik, Systeme", Proceedings). VDE Verlag GmbH.
Pyatishev E, Wurz M, Enns Y, Glukhovskoy A, Fischer E, Odintsov A et al. Elektromechanischer Mikro-Biegeaktor als optischer Shutter. In MikroSystemTechnik Kongress 2017 "MEMS, Mikroelektronik, Systeme", Proceedings. VDE Verlag GmbH. 2017. p. 519-522. (MikroSystemTechnik Kongress 2017 "MEMS, Mikroelektronik, Systeme", Proceedings).
Pyatishev, E. ; Wurz, Marc ; Enns, Y. et al. / Elektromechanischer Mikro-Biegeaktor als optischer Shutter. MikroSystemTechnik Kongress 2017 "MEMS, Mikroelektronik, Systeme", Proceedings. VDE Verlag GmbH, 2017. pp. 519-522 (MikroSystemTechnik Kongress 2017 "MEMS, Mikroelektronik, Systeme", Proceedings).
Download
@inproceedings{a267515ba2f14e1a8183b4a6f1fee375,
title = "Elektromechanischer Mikro-Biegeaktor als optischer Shutter",
abstract = "In this work is presented the design, fabrication methods, and characterization of a thin film electromechanical optical shutter. The working stroke of the optical channel is provided by a multilayer film structure of a cantilever, whose profile is determined by the residual internal stresses of the films. In the process of design analysis were determined the parameters of the strained structural layers, the temperature dependence of the curvature, the undamped natural frequencies and the damping parameters of the film cantilever. The experimental results fit the theoretical data closely. The developed control circuit is designed to compensate for the induced dielectric polarization and prevents a rise of the control voltage as well as the sticking effect of the cantilever. The presented design allows the development of a simple and effective electromechanical optical shutter with a modulation aperture height larger than 1.4 mm.",
author = "E. Pyatishev and Marc Wurz and Y. Enns and Anatoly Glukhovskoy and Enno Fischer and A. Odintsov and R. Kleimanov",
note = "Publisher Copyright: {\textcopyright} VDE VERLAG GMBH ∙ Berlin ∙ Offenbach Copyright: Copyright 2020 Elsevier B.V., All rights reserved.; MikroSystemTechnik Kongress 2017: MEMS, Mikroelektronik, Systeme ; Conference date: 23-10-2017 Through 25-10-2017",
year = "2017",
language = "Deutsch",
series = "MikroSystemTechnik Kongress 2017 {"}MEMS, Mikroelektronik, Systeme{"}, Proceedings",
publisher = "VDE Verlag GmbH",
pages = "519--522",
booktitle = "MikroSystemTechnik Kongress 2017 {"}MEMS, Mikroelektronik, Systeme{"}, Proceedings",
address = "Deutschland",

}

Download

TY - GEN

T1 - Elektromechanischer Mikro-Biegeaktor als optischer Shutter

AU - Pyatishev, E.

AU - Wurz, Marc

AU - Enns, Y.

AU - Glukhovskoy, Anatoly

AU - Fischer, Enno

AU - Odintsov, A.

AU - Kleimanov, R.

N1 - Publisher Copyright: © VDE VERLAG GMBH ∙ Berlin ∙ Offenbach Copyright: Copyright 2020 Elsevier B.V., All rights reserved.

PY - 2017

Y1 - 2017

N2 - In this work is presented the design, fabrication methods, and characterization of a thin film electromechanical optical shutter. The working stroke of the optical channel is provided by a multilayer film structure of a cantilever, whose profile is determined by the residual internal stresses of the films. In the process of design analysis were determined the parameters of the strained structural layers, the temperature dependence of the curvature, the undamped natural frequencies and the damping parameters of the film cantilever. The experimental results fit the theoretical data closely. The developed control circuit is designed to compensate for the induced dielectric polarization and prevents a rise of the control voltage as well as the sticking effect of the cantilever. The presented design allows the development of a simple and effective electromechanical optical shutter with a modulation aperture height larger than 1.4 mm.

AB - In this work is presented the design, fabrication methods, and characterization of a thin film electromechanical optical shutter. The working stroke of the optical channel is provided by a multilayer film structure of a cantilever, whose profile is determined by the residual internal stresses of the films. In the process of design analysis were determined the parameters of the strained structural layers, the temperature dependence of the curvature, the undamped natural frequencies and the damping parameters of the film cantilever. The experimental results fit the theoretical data closely. The developed control circuit is designed to compensate for the induced dielectric polarization and prevents a rise of the control voltage as well as the sticking effect of the cantilever. The presented design allows the development of a simple and effective electromechanical optical shutter with a modulation aperture height larger than 1.4 mm.

UR - http://www.scopus.com/inward/record.url?scp=85096802285&partnerID=8YFLogxK

M3 - Aufsatz in Konferenzband

AN - SCOPUS:85096802285

T3 - MikroSystemTechnik Kongress 2017 "MEMS, Mikroelektronik, Systeme", Proceedings

SP - 519

EP - 522

BT - MikroSystemTechnik Kongress 2017 "MEMS, Mikroelektronik, Systeme", Proceedings

PB - VDE Verlag GmbH

T2 - MikroSystemTechnik Kongress 2017: MEMS, Mikroelektronik, Systeme

Y2 - 23 October 2017 through 25 October 2017

ER -

By the same author(s)