Details
Translated title of the contribution | An object space based and with reference measurements supported calibration process of a k-TLS-based multi-sensor-system |
---|---|
Original language | German |
Pages (from-to) | 3-10 |
Number of pages | 8 |
Journal | AVN Allgemeine Vermessungs-Nachrichten |
Volume | 124 |
Issue number | 1-2 |
Publication status | Published - 2017 |
Abstract
Kinematic terrestrial laser scanning (k-TLS) is a suitable methodology to capture complex objects as well as objects with large longitudinal dimensions. In this contribution a k-TLS-based multi-sensor-system (MSS), consisting of a laser tracker in combination with a tracker machine control sensor (T-Mac) for a high accurate (sub-millimeter) and high-frequent (up to 1 kHz) geo referencing, is introduced. This process can also be denoted as spatial six Degrees of Freedom (6DOF) positioning. With the laser tracker a reference point field of the T-Mac, which is adapted to the laser scanner, is measured. The coordinate system of the T-Mac is shifted and distorted in three dimensions with respect to the coordinate system of the laser scanner. The process of determining the relative orientation is called (6DOF) calibration. One way to determine the 6DOF (three translations and three rotations) with high accuracy is to measure reference geometries, by the laser tracker and the laser scanner. This calibration method based on reference geometries was first published by /Strübing & Neumann 2013/.Within this paper we present a variant to determine four (two translations + two rotations) of 6DOF, without the usage of reference geometries. As a constraint a circular path of the T-Mac, which is mounted on the laser scanner, is introduced. The advantage hereby is, that only the highly accurate laser tracker measurements are included in the adjustment model. Furthermore, the workload (currently 4 - 5 hours) for the arrangement of the reference geometries can be reduced. That means the calibration process will be more efficient. The achieved accuracies of 6DOF are in sub-millimeter range for the translations and in the range of a few mgon for rotations.
ASJC Scopus subject areas
- Social Sciences(all)
- Geography, Planning and Development
- Earth and Planetary Sciences(all)
- Earth and Planetary Sciences (miscellaneous)
- Engineering(all)
- Civil and Structural Engineering
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: AVN Allgemeine Vermessungs-Nachrichten, Vol. 124, No. 1-2, 2017, p. 3-10.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Ein objektraumbasierter und durch Referenzmessungen gestützter Kalibrierprozess für ein k-TLS-basiertes Multi-Sensor-System
AU - Hartmann, Jens
AU - Marschel, Lars
AU - Dorndorf, Alexander
AU - Paffenholz, Jens-André
PY - 2017
Y1 - 2017
N2 - Kinematic terrestrial laser scanning (k-TLS) is a suitable methodology to capture complex objects as well as objects with large longitudinal dimensions. In this contribution a k-TLS-based multi-sensor-system (MSS), consisting of a laser tracker in combination with a tracker machine control sensor (T-Mac) for a high accurate (sub-millimeter) and high-frequent (up to 1 kHz) geo referencing, is introduced. This process can also be denoted as spatial six Degrees of Freedom (6DOF) positioning. With the laser tracker a reference point field of the T-Mac, which is adapted to the laser scanner, is measured. The coordinate system of the T-Mac is shifted and distorted in three dimensions with respect to the coordinate system of the laser scanner. The process of determining the relative orientation is called (6DOF) calibration. One way to determine the 6DOF (three translations and three rotations) with high accuracy is to measure reference geometries, by the laser tracker and the laser scanner. This calibration method based on reference geometries was first published by /Strübing & Neumann 2013/.Within this paper we present a variant to determine four (two translations + two rotations) of 6DOF, without the usage of reference geometries. As a constraint a circular path of the T-Mac, which is mounted on the laser scanner, is introduced. The advantage hereby is, that only the highly accurate laser tracker measurements are included in the adjustment model. Furthermore, the workload (currently 4 - 5 hours) for the arrangement of the reference geometries can be reduced. That means the calibration process will be more efficient. The achieved accuracies of 6DOF are in sub-millimeter range for the translations and in the range of a few mgon for rotations.
AB - Kinematic terrestrial laser scanning (k-TLS) is a suitable methodology to capture complex objects as well as objects with large longitudinal dimensions. In this contribution a k-TLS-based multi-sensor-system (MSS), consisting of a laser tracker in combination with a tracker machine control sensor (T-Mac) for a high accurate (sub-millimeter) and high-frequent (up to 1 kHz) geo referencing, is introduced. This process can also be denoted as spatial six Degrees of Freedom (6DOF) positioning. With the laser tracker a reference point field of the T-Mac, which is adapted to the laser scanner, is measured. The coordinate system of the T-Mac is shifted and distorted in three dimensions with respect to the coordinate system of the laser scanner. The process of determining the relative orientation is called (6DOF) calibration. One way to determine the 6DOF (three translations and three rotations) with high accuracy is to measure reference geometries, by the laser tracker and the laser scanner. This calibration method based on reference geometries was first published by /Strübing & Neumann 2013/.Within this paper we present a variant to determine four (two translations + two rotations) of 6DOF, without the usage of reference geometries. As a constraint a circular path of the T-Mac, which is mounted on the laser scanner, is introduced. The advantage hereby is, that only the highly accurate laser tracker measurements are included in the adjustment model. Furthermore, the workload (currently 4 - 5 hours) for the arrangement of the reference geometries can be reduced. That means the calibration process will be more efficient. The achieved accuracies of 6DOF are in sub-millimeter range for the translations and in the range of a few mgon for rotations.
KW - Calibration
KW - Industrial surveying
KW - Kinematic laser scanning
KW - Multi-sensor-system
UR - http://www.scopus.com/inward/record.url?scp=85012951865&partnerID=8YFLogxK
M3 - Artikel
VL - 124
SP - 3
EP - 10
JO - AVN Allgemeine Vermessungs-Nachrichten
JF - AVN Allgemeine Vermessungs-Nachrichten
SN - 0002-5968
IS - 1-2
ER -