Details
Original language | English |
---|---|
Article number | 14 |
Number of pages | 20 |
Journal | Analysis and mathematical physics |
Volume | 13 |
Issue number | 1 |
Early online date | 6 Jan 2023 |
Publication status | Published - Feb 2023 |
Abstract
In this article we will explore Dirichlet Laplace eigenvalues of balls with spherically symmetric metrics. We will compare any Dirichlet Laplace eigenvalue with the corresponding Dirichlet Laplace eigenvalue on balls in Euclidean space with the same radii. As a special case we shall show that the Dirichlet Laplace eigenvalues of balls with small radii on the sphere are smaller than the corresponding eigenvalues of the Euclidean balls with the same radii. The opposite correspondence is true for the Dirichlet Laplace eigenvalues of hyperbolic spaces.
ASJC Scopus subject areas
- Mathematics(all)
- Analysis
- Mathematics(all)
- Algebra and Number Theory
- Mathematics(all)
- Mathematical Physics
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Analysis and mathematical physics, Vol. 13, No. 1, 14, 02.2023.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Eigenvalues of the Laplacian on balls with spherically symmetric metrics
AU - Berge, Stine Marie
N1 - Funding Information: Open Access funding enabled and organized by Projekt DEAL.
PY - 2023/2
Y1 - 2023/2
N2 - In this article we will explore Dirichlet Laplace eigenvalues of balls with spherically symmetric metrics. We will compare any Dirichlet Laplace eigenvalue with the corresponding Dirichlet Laplace eigenvalue on balls in Euclidean space with the same radii. As a special case we shall show that the Dirichlet Laplace eigenvalues of balls with small radii on the sphere are smaller than the corresponding eigenvalues of the Euclidean balls with the same radii. The opposite correspondence is true for the Dirichlet Laplace eigenvalues of hyperbolic spaces.
AB - In this article we will explore Dirichlet Laplace eigenvalues of balls with spherically symmetric metrics. We will compare any Dirichlet Laplace eigenvalue with the corresponding Dirichlet Laplace eigenvalue on balls in Euclidean space with the same radii. As a special case we shall show that the Dirichlet Laplace eigenvalues of balls with small radii on the sphere are smaller than the corresponding eigenvalues of the Euclidean balls with the same radii. The opposite correspondence is true for the Dirichlet Laplace eigenvalues of hyperbolic spaces.
UR - http://www.scopus.com/inward/record.url?scp=85145843681&partnerID=8YFLogxK
U2 - 10.1007/s13324-022-00772-9
DO - 10.1007/s13324-022-00772-9
M3 - Article
AN - SCOPUS:85145843681
VL - 13
JO - Analysis and mathematical physics
JF - Analysis and mathematical physics
SN - 1664-2368
IS - 1
M1 - 14
ER -