Details
Original language | English |
---|---|
Title of host publication | Domain Decomposition Methods in Science and Engineering XXVI |
Editors | Susanne C. Brenner, Axel Klawonn, Jinchao Xu, Eric Chung, Jun Zou, Felix Kwok |
Publisher | Springer Science and Business Media Deutschland GmbH |
Pages | 327-335 |
Number of pages | 9 |
ISBN (print) | 9783030950248 |
Publication status | Published - 2022 |
Event | 26th International Conference on Domain Decomposition Methods, 2020 - Virtual, Online Duration: 7 Dec 2020 → 12 Dec 2020 |
Publication series
Name | Lecture Notes in Computational Science and Engineering |
---|---|
Volume | 145 |
ISSN (Print) | 1439-7358 |
ISSN (electronic) | 2197-7100 |
Abstract
This work is devoted to the efficient solution of variational-monolithic fluid-structure interaction (FSI) initial-boundary value problems. Solvers for such monolithic systems were developed, e.g., in [2, 3, 5, 7, 9, 11–13, 15]. Due to the interface coupling conditions, the development of robust scalable parallel solvers remains a challenging task, and to the best of our knowledge only semi-cost optimal parallel approaches could be derived [4, 9]. The main purpose of this work consists in further numerical studies of the solver, developed in [9], for a benchmark problem that is motivated by hemodynamic applications. Specifically, we consider channel flow with elastic membranes and elastic solid walls.
ASJC Scopus subject areas
- Mathematics(all)
- Modelling and Simulation
- Engineering(all)
- General Engineering
- Mathematics(all)
- Discrete Mathematics and Combinatorics
- Mathematics(all)
- Control and Optimization
- Mathematics(all)
- Computational Mathematics
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
Domain Decomposition Methods in Science and Engineering XXVI. ed. / Susanne C. Brenner; Axel Klawonn; Jinchao Xu; Eric Chung; Jun Zou; Felix Kwok. Springer Science and Business Media Deutschland GmbH, 2022. p. 327-335 (Lecture Notes in Computational Science and Engineering; Vol. 145).
Research output: Chapter in book/report/conference proceeding › Conference contribution › Research › peer review
}
TY - GEN
T1 - Efficient Monolithic Solvers for Fluid-Structure Interaction Applied to Flapping Membranes
AU - Jodlbauer, D.
AU - Langer, U.
AU - Wick, T.
N1 - Funding Information: Acknowledgements This work has been supported by the Austrian Science Fund (FWF) grant P29181 ‘Goal-Oriented Error Control for Phase-Field Fracture Coupled to Multiphysics Problems’, and by the Doctoral Program W1214-03 at the Johannes Kepler University Linz.
PY - 2022
Y1 - 2022
N2 - This work is devoted to the efficient solution of variational-monolithic fluid-structure interaction (FSI) initial-boundary value problems. Solvers for such monolithic systems were developed, e.g., in [2, 3, 5, 7, 9, 11–13, 15]. Due to the interface coupling conditions, the development of robust scalable parallel solvers remains a challenging task, and to the best of our knowledge only semi-cost optimal parallel approaches could be derived [4, 9]. The main purpose of this work consists in further numerical studies of the solver, developed in [9], for a benchmark problem that is motivated by hemodynamic applications. Specifically, we consider channel flow with elastic membranes and elastic solid walls.
AB - This work is devoted to the efficient solution of variational-monolithic fluid-structure interaction (FSI) initial-boundary value problems. Solvers for such monolithic systems were developed, e.g., in [2, 3, 5, 7, 9, 11–13, 15]. Due to the interface coupling conditions, the development of robust scalable parallel solvers remains a challenging task, and to the best of our knowledge only semi-cost optimal parallel approaches could be derived [4, 9]. The main purpose of this work consists in further numerical studies of the solver, developed in [9], for a benchmark problem that is motivated by hemodynamic applications. Specifically, we consider channel flow with elastic membranes and elastic solid walls.
UR - http://www.scopus.com/inward/record.url?scp=85151157359&partnerID=8YFLogxK
U2 - 10.1007/978-3-030-95025-5_34
DO - 10.1007/978-3-030-95025-5_34
M3 - Conference contribution
AN - SCOPUS:85151157359
SN - 9783030950248
T3 - Lecture Notes in Computational Science and Engineering
SP - 327
EP - 335
BT - Domain Decomposition Methods in Science and Engineering XXVI
A2 - Brenner, Susanne C.
A2 - Klawonn, Axel
A2 - Xu, Jinchao
A2 - Chung, Eric
A2 - Zou, Jun
A2 - Kwok, Felix
PB - Springer Science and Business Media Deutschland GmbH
T2 - 26th International Conference on Domain Decomposition Methods, 2020
Y2 - 7 December 2020 through 12 December 2020
ER -