Details
Original language | English |
---|---|
Article number | 063011 |
Journal | Physical Review D |
Volume | 104 |
Issue number | 6 |
Early online date | 7 Sept 2021 |
Publication status | Published - 15 Sept 2021 |
Abstract
We determine the ability of Cosmic Explorer, a proposed third-generation gravitational-wave observatory, to detect eccentric binary neutron stars and to measure their eccentricity. We find that for a matched-filter search, template banks constructed using binaries in quasicircular orbits are effectual for eccentric neutron star binaries with e7≤0.004 (e7≤0.003) for CE1 (CE2), where e7 is the binary's eccentricity at a gravitational-wave frequency of 7 Hz. We show that stochastic template placement can be used to construct a matched-filter search for binaries with larger eccentricities and construct an effectual template bank for binaries with e7≤0.05. We show that the computational cost of both the search for binaries in quasicircular orbits and eccentric orbits is not significantly larger for Cosmic Explorer than for Advanced LIGO and is accessible with present-day computational resources. We investigate Cosmic Explorer's ability to distinguish between circular and eccentric binaries. We estimate that for a binary with a signal-to-noise ratio of 20 (800), Cosmic Explorer can distinguish between a circular binary and a binary with eccentricity e7 10-2 (10-3) at 90% confidence.
ASJC Scopus subject areas
- Physics and Astronomy(all)
- Physics and Astronomy (miscellaneous)
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Physical Review D, Vol. 104, No. 6, 063011, 15.09.2021.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Eccentric binary neutron star search prospects for Cosmic Explorer
AU - Lenon, Amber K.
AU - Nitz, Alexander H.
N1 - Funding Information: We acknowledge the Max Planck Gesellschaft for support and the Atlas cluster computing team at AEI Hannover. DAB thanks National Science Foundation Grants No. PHY-1707954 and No. PHY-2011655 for support. A. L. thanks National Science Foundation Grant No. AST-1559694 for support.
PY - 2021/9/15
Y1 - 2021/9/15
N2 - We determine the ability of Cosmic Explorer, a proposed third-generation gravitational-wave observatory, to detect eccentric binary neutron stars and to measure their eccentricity. We find that for a matched-filter search, template banks constructed using binaries in quasicircular orbits are effectual for eccentric neutron star binaries with e7≤0.004 (e7≤0.003) for CE1 (CE2), where e7 is the binary's eccentricity at a gravitational-wave frequency of 7 Hz. We show that stochastic template placement can be used to construct a matched-filter search for binaries with larger eccentricities and construct an effectual template bank for binaries with e7≤0.05. We show that the computational cost of both the search for binaries in quasicircular orbits and eccentric orbits is not significantly larger for Cosmic Explorer than for Advanced LIGO and is accessible with present-day computational resources. We investigate Cosmic Explorer's ability to distinguish between circular and eccentric binaries. We estimate that for a binary with a signal-to-noise ratio of 20 (800), Cosmic Explorer can distinguish between a circular binary and a binary with eccentricity e7 10-2 (10-3) at 90% confidence.
AB - We determine the ability of Cosmic Explorer, a proposed third-generation gravitational-wave observatory, to detect eccentric binary neutron stars and to measure their eccentricity. We find that for a matched-filter search, template banks constructed using binaries in quasicircular orbits are effectual for eccentric neutron star binaries with e7≤0.004 (e7≤0.003) for CE1 (CE2), where e7 is the binary's eccentricity at a gravitational-wave frequency of 7 Hz. We show that stochastic template placement can be used to construct a matched-filter search for binaries with larger eccentricities and construct an effectual template bank for binaries with e7≤0.05. We show that the computational cost of both the search for binaries in quasicircular orbits and eccentric orbits is not significantly larger for Cosmic Explorer than for Advanced LIGO and is accessible with present-day computational resources. We investigate Cosmic Explorer's ability to distinguish between circular and eccentric binaries. We estimate that for a binary with a signal-to-noise ratio of 20 (800), Cosmic Explorer can distinguish between a circular binary and a binary with eccentricity e7 10-2 (10-3) at 90% confidence.
UR - http://www.scopus.com/inward/record.url?scp=85114872298&partnerID=8YFLogxK
U2 - 10.1103/PhysRevD.104.063011
DO - 10.1103/PhysRevD.104.063011
M3 - Article
AN - SCOPUS:85114872298
VL - 104
JO - Physical Review D
JF - Physical Review D
SN - 2470-0010
IS - 6
M1 - 063011
ER -