Earth’s time-variable gravity from GRACE follow-on K-Band range-rates and pseudo-observed orbits

Research output: Contribution to journalArticleResearchpeer review

Authors

  • Igor Koch
  • Mathias Duwe
  • Jakob Flury
  • Akbar Shabanloui

Research Organisations

View graph of relations

Details

Original languageEnglish
Article number1766
JournalRemote sensing
Volume13
Issue number9
Publication statusPublished - 1 May 2021

Abstract

During its science phase from 2002-2017, the low-low satellite-to-satellite tracking mission Gravity Field Recovery And Climate Experiment (GRACE) provided an insight into Earth’s timevariable gravity (TVG). The unprecedented quality of gravity field solutions from GRACE sensor data improved the understanding of mass changes in Earth’s system considerably. Monthly gravity field solutions as the main products of the GRACE mission, published by several analysis centers (ACs) from Europe, USA and China, became indispensable products for quantifying terrestrial water storage, ice sheet mass balance and sea level change. The successor mission GRACE Follow-On (GRACE-FO) was launched in May 2018 and proceeds observing Earth’s TVG. The Institute of Geodesy (IfE) at Leibniz University Hannover (LUH) is one of the most recent ACs. The purpose of this article is to give a detailed insight into the gravity field recovery processing strategy applied at LUH; to compare the obtained gravity field results to the gravity field solutions of other established ACs; and to compare the GRACE-FO performance to that of the preceding GRACE mission in terms of post-fit residuals. We use the in-house-developed MATLAB-based GRACE-SIGMA software to compute unconstrained solutions based on the generalized orbit determination of 3 h arcs. K-band range-rates (KBRR) and kinematic orbits are used as (pseudo)-observations. A comparison of the obtained solutions to the results of the GRACE-FO Science Data System (SDS) and Combination Service for Time-variable Gravity Fields (COST-G) ACs, reveals a competitive quality of our solutions. While the spectral and spatial noise levels slightly differ, the signal content of the solutions is similar among all ACs. The carried out comparison of GRACE and GRACE-FO KBRR post-fit residuals highlights an improvement of the GRACE-FO K-band ranging system performance. The overall amplitude of GRACE-FO post-fit residuals is about three times smaller, compared to GRACE. GRACE-FO post-fit residuals show less systematics, compared to GRACE. Nevertheless, the power spectral density of GRACE-FO and GRACE post-fit residuals is dominated by similar spikes located at multiples of the orbital and daily frequencies. To our knowledge, the detailed origin of these spikes and their influence on the gravity field recovery quality were not addressed in any study so far and therefore deserve further attention in the future. Presented results are based on 29 monthly gravity field solutions from June 2018 until December 2020. The regularly updated LUH-GRACE-FO- 2020 time series of monthly gravity field solutions can be found on the website of the International Centre for Global Earth Models (ICGEM) and in LUH’s research data repository. These operationally published products complement the time series of the already established ACs and allow for a continuous and independent assessment of mass changes in Earth’s system.

Keywords

    Dynamic orbit determination, GRACE follow-on, Gravity field recovery, KBRR post-fit residuals, Satellite gravimetry, Satellite-to-satellite tracking, Time-variable gravity

ASJC Scopus subject areas

Sustainable Development Goals

Cite this

Earth’s time-variable gravity from GRACE follow-on K-Band range-rates and pseudo-observed orbits. / Koch, Igor; Duwe, Mathias; Flury, Jakob et al.
In: Remote sensing, Vol. 13, No. 9, 1766, 01.05.2021.

Research output: Contribution to journalArticleResearchpeer review

Koch I, Duwe M, Flury J, Shabanloui A. Earth’s time-variable gravity from GRACE follow-on K-Band range-rates and pseudo-observed orbits. Remote sensing. 2021 May 1;13(9):1766. doi: 10.3390/rs13091766, 10.15488/11213
Download
@article{64057cde805a4a059b109c9a0c71d158,
title = "Earth{\textquoteright}s time-variable gravity from GRACE follow-on K-Band range-rates and pseudo-observed orbits",
abstract = "During its science phase from 2002-2017, the low-low satellite-to-satellite tracking mission Gravity Field Recovery And Climate Experiment (GRACE) provided an insight into Earth{\textquoteright}s timevariable gravity (TVG). The unprecedented quality of gravity field solutions from GRACE sensor data improved the understanding of mass changes in Earth{\textquoteright}s system considerably. Monthly gravity field solutions as the main products of the GRACE mission, published by several analysis centers (ACs) from Europe, USA and China, became indispensable products for quantifying terrestrial water storage, ice sheet mass balance and sea level change. The successor mission GRACE Follow-On (GRACE-FO) was launched in May 2018 and proceeds observing Earth{\textquoteright}s TVG. The Institute of Geodesy (IfE) at Leibniz University Hannover (LUH) is one of the most recent ACs. The purpose of this article is to give a detailed insight into the gravity field recovery processing strategy applied at LUH; to compare the obtained gravity field results to the gravity field solutions of other established ACs; and to compare the GRACE-FO performance to that of the preceding GRACE mission in terms of post-fit residuals. We use the in-house-developed MATLAB-based GRACE-SIGMA software to compute unconstrained solutions based on the generalized orbit determination of 3 h arcs. K-band range-rates (KBRR) and kinematic orbits are used as (pseudo)-observations. A comparison of the obtained solutions to the results of the GRACE-FO Science Data System (SDS) and Combination Service for Time-variable Gravity Fields (COST-G) ACs, reveals a competitive quality of our solutions. While the spectral and spatial noise levels slightly differ, the signal content of the solutions is similar among all ACs. The carried out comparison of GRACE and GRACE-FO KBRR post-fit residuals highlights an improvement of the GRACE-FO K-band ranging system performance. The overall amplitude of GRACE-FO post-fit residuals is about three times smaller, compared to GRACE. GRACE-FO post-fit residuals show less systematics, compared to GRACE. Nevertheless, the power spectral density of GRACE-FO and GRACE post-fit residuals is dominated by similar spikes located at multiples of the orbital and daily frequencies. To our knowledge, the detailed origin of these spikes and their influence on the gravity field recovery quality were not addressed in any study so far and therefore deserve further attention in the future. Presented results are based on 29 monthly gravity field solutions from June 2018 until December 2020. The regularly updated LUH-GRACE-FO- 2020 time series of monthly gravity field solutions can be found on the website of the International Centre for Global Earth Models (ICGEM) and in LUH{\textquoteright}s research data repository. These operationally published products complement the time series of the already established ACs and allow for a continuous and independent assessment of mass changes in Earth{\textquoteright}s system.",
keywords = "Dynamic orbit determination, GRACE follow-on, Gravity field recovery, KBRR post-fit residuals, Satellite gravimetry, Satellite-to-satellite tracking, Time-variable gravity",
author = "Igor Koch and Mathias Duwe and Jakob Flury and Akbar Shabanloui",
note = "Funding Information: Funding: This research received funding from the German federal state of Lower Saxony.Acknowledgments: We would like to thank the German Space Operations Center (GSOC) of the German Aerospace Center (DLR) for providing continuously and nearly 100% of the raw telemetry data of the twin GRACE-FO satellites. Majid Naeimi is acknowledged for developing the initial version of GRACE-SIGMA. The colleagues from the Combination Service for Time-variable Gravity Fields (COST-G) are acknowledged. The COST-G meetings helped us to improve our gravity field recovery strategy. The International Space Science Institute (ISSI) in Bern/Switzerland is acknowledged for hosting the COST-G team meetings in 2019, 2020 and 2021. Participation in these meetings was financially supported by ISSI. We are thankful for the valuable comments of the anonymous reviewers. The publication of this article was funded by the Open Access Fund of the Leibniz Universit{\"a}t Hannover. ",
year = "2021",
month = may,
day = "1",
doi = "10.3390/rs13091766",
language = "English",
volume = "13",
journal = "Remote sensing",
issn = "2072-4292",
publisher = "Multidisciplinary Digital Publishing Institute",
number = "9",

}

Download

TY - JOUR

T1 - Earth’s time-variable gravity from GRACE follow-on K-Band range-rates and pseudo-observed orbits

AU - Koch, Igor

AU - Duwe, Mathias

AU - Flury, Jakob

AU - Shabanloui, Akbar

N1 - Funding Information: Funding: This research received funding from the German federal state of Lower Saxony.Acknowledgments: We would like to thank the German Space Operations Center (GSOC) of the German Aerospace Center (DLR) for providing continuously and nearly 100% of the raw telemetry data of the twin GRACE-FO satellites. Majid Naeimi is acknowledged for developing the initial version of GRACE-SIGMA. The colleagues from the Combination Service for Time-variable Gravity Fields (COST-G) are acknowledged. The COST-G meetings helped us to improve our gravity field recovery strategy. The International Space Science Institute (ISSI) in Bern/Switzerland is acknowledged for hosting the COST-G team meetings in 2019, 2020 and 2021. Participation in these meetings was financially supported by ISSI. We are thankful for the valuable comments of the anonymous reviewers. The publication of this article was funded by the Open Access Fund of the Leibniz Universität Hannover.

PY - 2021/5/1

Y1 - 2021/5/1

N2 - During its science phase from 2002-2017, the low-low satellite-to-satellite tracking mission Gravity Field Recovery And Climate Experiment (GRACE) provided an insight into Earth’s timevariable gravity (TVG). The unprecedented quality of gravity field solutions from GRACE sensor data improved the understanding of mass changes in Earth’s system considerably. Monthly gravity field solutions as the main products of the GRACE mission, published by several analysis centers (ACs) from Europe, USA and China, became indispensable products for quantifying terrestrial water storage, ice sheet mass balance and sea level change. The successor mission GRACE Follow-On (GRACE-FO) was launched in May 2018 and proceeds observing Earth’s TVG. The Institute of Geodesy (IfE) at Leibniz University Hannover (LUH) is one of the most recent ACs. The purpose of this article is to give a detailed insight into the gravity field recovery processing strategy applied at LUH; to compare the obtained gravity field results to the gravity field solutions of other established ACs; and to compare the GRACE-FO performance to that of the preceding GRACE mission in terms of post-fit residuals. We use the in-house-developed MATLAB-based GRACE-SIGMA software to compute unconstrained solutions based on the generalized orbit determination of 3 h arcs. K-band range-rates (KBRR) and kinematic orbits are used as (pseudo)-observations. A comparison of the obtained solutions to the results of the GRACE-FO Science Data System (SDS) and Combination Service for Time-variable Gravity Fields (COST-G) ACs, reveals a competitive quality of our solutions. While the spectral and spatial noise levels slightly differ, the signal content of the solutions is similar among all ACs. The carried out comparison of GRACE and GRACE-FO KBRR post-fit residuals highlights an improvement of the GRACE-FO K-band ranging system performance. The overall amplitude of GRACE-FO post-fit residuals is about three times smaller, compared to GRACE. GRACE-FO post-fit residuals show less systematics, compared to GRACE. Nevertheless, the power spectral density of GRACE-FO and GRACE post-fit residuals is dominated by similar spikes located at multiples of the orbital and daily frequencies. To our knowledge, the detailed origin of these spikes and their influence on the gravity field recovery quality were not addressed in any study so far and therefore deserve further attention in the future. Presented results are based on 29 monthly gravity field solutions from June 2018 until December 2020. The regularly updated LUH-GRACE-FO- 2020 time series of monthly gravity field solutions can be found on the website of the International Centre for Global Earth Models (ICGEM) and in LUH’s research data repository. These operationally published products complement the time series of the already established ACs and allow for a continuous and independent assessment of mass changes in Earth’s system.

AB - During its science phase from 2002-2017, the low-low satellite-to-satellite tracking mission Gravity Field Recovery And Climate Experiment (GRACE) provided an insight into Earth’s timevariable gravity (TVG). The unprecedented quality of gravity field solutions from GRACE sensor data improved the understanding of mass changes in Earth’s system considerably. Monthly gravity field solutions as the main products of the GRACE mission, published by several analysis centers (ACs) from Europe, USA and China, became indispensable products for quantifying terrestrial water storage, ice sheet mass balance and sea level change. The successor mission GRACE Follow-On (GRACE-FO) was launched in May 2018 and proceeds observing Earth’s TVG. The Institute of Geodesy (IfE) at Leibniz University Hannover (LUH) is one of the most recent ACs. The purpose of this article is to give a detailed insight into the gravity field recovery processing strategy applied at LUH; to compare the obtained gravity field results to the gravity field solutions of other established ACs; and to compare the GRACE-FO performance to that of the preceding GRACE mission in terms of post-fit residuals. We use the in-house-developed MATLAB-based GRACE-SIGMA software to compute unconstrained solutions based on the generalized orbit determination of 3 h arcs. K-band range-rates (KBRR) and kinematic orbits are used as (pseudo)-observations. A comparison of the obtained solutions to the results of the GRACE-FO Science Data System (SDS) and Combination Service for Time-variable Gravity Fields (COST-G) ACs, reveals a competitive quality of our solutions. While the spectral and spatial noise levels slightly differ, the signal content of the solutions is similar among all ACs. The carried out comparison of GRACE and GRACE-FO KBRR post-fit residuals highlights an improvement of the GRACE-FO K-band ranging system performance. The overall amplitude of GRACE-FO post-fit residuals is about three times smaller, compared to GRACE. GRACE-FO post-fit residuals show less systematics, compared to GRACE. Nevertheless, the power spectral density of GRACE-FO and GRACE post-fit residuals is dominated by similar spikes located at multiples of the orbital and daily frequencies. To our knowledge, the detailed origin of these spikes and their influence on the gravity field recovery quality were not addressed in any study so far and therefore deserve further attention in the future. Presented results are based on 29 monthly gravity field solutions from June 2018 until December 2020. The regularly updated LUH-GRACE-FO- 2020 time series of monthly gravity field solutions can be found on the website of the International Centre for Global Earth Models (ICGEM) and in LUH’s research data repository. These operationally published products complement the time series of the already established ACs and allow for a continuous and independent assessment of mass changes in Earth’s system.

KW - Dynamic orbit determination

KW - GRACE follow-on

KW - Gravity field recovery

KW - KBRR post-fit residuals

KW - Satellite gravimetry

KW - Satellite-to-satellite tracking

KW - Time-variable gravity

UR - http://www.scopus.com/inward/record.url?scp=85105576384&partnerID=8YFLogxK

U2 - 10.3390/rs13091766

DO - 10.3390/rs13091766

M3 - Article

AN - SCOPUS:85105576384

VL - 13

JO - Remote sensing

JF - Remote sensing

SN - 2072-4292

IS - 9

M1 - 1766

ER -

By the same author(s)