Details
Original language | English |
---|---|
Article number | 113124 |
Journal | Sensors and Actuators A: Physical |
Volume | 332 |
Early online date | 20 Sept 2021 |
Publication status | Published - 1 Dec 2021 |
Abstract
This study verifies the effectiveness of a dynamic resonant frequency control system for transducers. This system enables the resonant frequency of the transducer to match the driving frequency. In general, the resonant frequency of an ultrasonic transducer is fixed based on its design and material properties. Therefore, it is difficult to actively control the frequency when driving the transducer. However, for high-power piezoelectric actuators, it is important to control the ratio of the fundamental and higher-order resonant frequency of the longitudinal vibration precisely at 1:2. A high-power and high mechanical quality factor (high-Q) ultrasonic transducer requires precise control of its resonant frequency. However, the resonant frequency may shift due to changes in boundary conditions or non-linear phenomena in piezoelectric vibration while driving the ultrasonic transducer. To maintain the resonant frequency ratio of the ultrasonic transducer at 1:2, we propose to dynamically control the resonant frequency ratio constant. In this study, we made two main proposals to our dynamic resonant frequency control system. One is the stepped structure of the transducer, and the other is the completely automatic control. In the stepped structure, a Langevin transducer was designed to have a resonant frequency ratio of almost 1:2 for the first and third longitudinal mode in the initial condition. Additionally, this structure could achieve control of only one of two resonant frequencies of the transducer. For the utterly automatic control system, piezoelectric elements were introduced for controlling the resonant frequency ratio precisely. For this propose, switching the electrical boundary conditions of these piezoelectric elements was carried out by MOSFETs connected to the ultrasonic transducer and control its optimum duty ratio automatically by our feedback system. This system realized dynamic control of the resonant frequency. As a result, the resonant frequency of the transducer matched the driving frequency in the frequency band from 23.23 kHz to 23.93 kHz. It was also confirmed that the shape of the excited non-sinusoidal waveform could be controlled by using resonant frequency control.
Keywords
- Non-sinusoidal waveform, Resonant frequency control, Ultrasonic transducer
ASJC Scopus subject areas
- Materials Science(all)
- Electronic, Optical and Magnetic Materials
- Physics and Astronomy(all)
- Instrumentation
- Physics and Astronomy(all)
- Condensed Matter Physics
- Materials Science(all)
- Surfaces, Coatings and Films
- Materials Science(all)
- Metals and Alloys
- Engineering(all)
- Electrical and Electronic Engineering
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Sensors and Actuators A: Physical, Vol. 332, 113124, 01.12.2021.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Dynamic resonant frequency control system of ultrasonic transducer for non-sinusoidal waveform excitation
AU - Hachisuka, Satori
AU - Yokozawa, Hiroki
AU - Wang, Fangyi
AU - Miyake, Susumu
AU - Twiefel, Jens
AU - Morita, Takeshi
PY - 2021/12/1
Y1 - 2021/12/1
N2 - This study verifies the effectiveness of a dynamic resonant frequency control system for transducers. This system enables the resonant frequency of the transducer to match the driving frequency. In general, the resonant frequency of an ultrasonic transducer is fixed based on its design and material properties. Therefore, it is difficult to actively control the frequency when driving the transducer. However, for high-power piezoelectric actuators, it is important to control the ratio of the fundamental and higher-order resonant frequency of the longitudinal vibration precisely at 1:2. A high-power and high mechanical quality factor (high-Q) ultrasonic transducer requires precise control of its resonant frequency. However, the resonant frequency may shift due to changes in boundary conditions or non-linear phenomena in piezoelectric vibration while driving the ultrasonic transducer. To maintain the resonant frequency ratio of the ultrasonic transducer at 1:2, we propose to dynamically control the resonant frequency ratio constant. In this study, we made two main proposals to our dynamic resonant frequency control system. One is the stepped structure of the transducer, and the other is the completely automatic control. In the stepped structure, a Langevin transducer was designed to have a resonant frequency ratio of almost 1:2 for the first and third longitudinal mode in the initial condition. Additionally, this structure could achieve control of only one of two resonant frequencies of the transducer. For the utterly automatic control system, piezoelectric elements were introduced for controlling the resonant frequency ratio precisely. For this propose, switching the electrical boundary conditions of these piezoelectric elements was carried out by MOSFETs connected to the ultrasonic transducer and control its optimum duty ratio automatically by our feedback system. This system realized dynamic control of the resonant frequency. As a result, the resonant frequency of the transducer matched the driving frequency in the frequency band from 23.23 kHz to 23.93 kHz. It was also confirmed that the shape of the excited non-sinusoidal waveform could be controlled by using resonant frequency control.
AB - This study verifies the effectiveness of a dynamic resonant frequency control system for transducers. This system enables the resonant frequency of the transducer to match the driving frequency. In general, the resonant frequency of an ultrasonic transducer is fixed based on its design and material properties. Therefore, it is difficult to actively control the frequency when driving the transducer. However, for high-power piezoelectric actuators, it is important to control the ratio of the fundamental and higher-order resonant frequency of the longitudinal vibration precisely at 1:2. A high-power and high mechanical quality factor (high-Q) ultrasonic transducer requires precise control of its resonant frequency. However, the resonant frequency may shift due to changes in boundary conditions or non-linear phenomena in piezoelectric vibration while driving the ultrasonic transducer. To maintain the resonant frequency ratio of the ultrasonic transducer at 1:2, we propose to dynamically control the resonant frequency ratio constant. In this study, we made two main proposals to our dynamic resonant frequency control system. One is the stepped structure of the transducer, and the other is the completely automatic control. In the stepped structure, a Langevin transducer was designed to have a resonant frequency ratio of almost 1:2 for the first and third longitudinal mode in the initial condition. Additionally, this structure could achieve control of only one of two resonant frequencies of the transducer. For the utterly automatic control system, piezoelectric elements were introduced for controlling the resonant frequency ratio precisely. For this propose, switching the electrical boundary conditions of these piezoelectric elements was carried out by MOSFETs connected to the ultrasonic transducer and control its optimum duty ratio automatically by our feedback system. This system realized dynamic control of the resonant frequency. As a result, the resonant frequency of the transducer matched the driving frequency in the frequency band from 23.23 kHz to 23.93 kHz. It was also confirmed that the shape of the excited non-sinusoidal waveform could be controlled by using resonant frequency control.
KW - Non-sinusoidal waveform
KW - Resonant frequency control
KW - Ultrasonic transducer
UR - http://www.scopus.com/inward/record.url?scp=85115888649&partnerID=8YFLogxK
U2 - 10.1016/j.sna.2021.113124
DO - 10.1016/j.sna.2021.113124
M3 - Article
AN - SCOPUS:85115888649
VL - 332
JO - Sensors and Actuators A: Physical
JF - Sensors and Actuators A: Physical
SN - 0924-4247
M1 - 113124
ER -