Details
Original language | English |
---|---|
Journal | Journal of Soil Science and Plant Nutrition |
Early online date | 15 Nov 2024 |
Publication status | E-pub ahead of print - 15 Nov 2024 |
Abstract
Background: While well-described for soil properties, we barely know how microbial traits determine the availability of various phosphorus (P) forms to crops. Aims: We traced the dynamics of mineral- versus residue-derived P applied to two contrasting soil types during wheat cultivation. Methods: The legacy effect of three pre-sowing moisture conditions was investigated: drought (30% water holding capacity, WHC), alternating cycles of drying (30% WHC) and wetting (70% WHC), and well-watered conditions (70% WHC). 33P-labelled cowpea residues (Vigna unguiculate) and KH233PO4 were applied as fertilizers to calcareous and carbonate-free soils. Results: Under pre-sowing drought conditions, microbial incorporation of 33P from residue P into polar lipids was four times higher than from mineral P. Calcareous soils showed double the microbial biomass than carbonate-free soils. However, when fertilized with residue P, carbonate-free soils exhibited twice the acid phosphatase activity and a 3- to 6-fold greater 33P uptake into phospholipids normalized per unit microbial biomass C. Conclusion: Residue P enhances microbial growth, leading to increased P immobilization, especially in carbonate-free soils. Drought-triggered microorganisms efficiently acquire P from organic sources like residues. This increased microbial P immobilization under pre-sowing drought does not negatively affect plant growth, when a mineralizable organic P pool is consistently available. Regardless of the pre-sowing moisture conditions, residue P fertilization promotes a rapidly cycling microbial biomass-necromass pool, specifically in calcareous soils. This implies that residue P fertilization could be a sustainable, long-term strategy for continuous P supply in P-immobilizing calcareous soils, even under increasing drought conditions due to climate change.
Keywords
- Alternate drying/wetting cycles, Climate change, Legacy effects on microbial traits, Phosphorus, Pre-sowing moisture regime, Sustainable agriculture
ASJC Scopus subject areas
- Agricultural and Biological Sciences(all)
- Agronomy and Crop Science
- Agricultural and Biological Sciences(all)
- Soil Science
- Agricultural and Biological Sciences(all)
- Plant Science
Sustainable Development Goals
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Journal of Soil Science and Plant Nutrition, 15.11.2024.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Droughts Legacy Effects on Phosphorus Transformation from Residues and Mineral Fertilizers in Calcareous and Carbonate-Free Soils
T2 - A 33P Labeling Study
AU - Farooq, Naila
AU - Koirala, Manisha
AU - Loftus, Sara
AU - Zhang, Xi
AU - Zamanian, Kazem
AU - Banfield, Callum C.
AU - Dippold, Michaela A.
N1 - Publisher Copyright: © The Author(s) under exclusive licence to Sociedad Chilena de la Ciencia del Suelo 2024.
PY - 2024/11/15
Y1 - 2024/11/15
N2 - Background: While well-described for soil properties, we barely know how microbial traits determine the availability of various phosphorus (P) forms to crops. Aims: We traced the dynamics of mineral- versus residue-derived P applied to two contrasting soil types during wheat cultivation. Methods: The legacy effect of three pre-sowing moisture conditions was investigated: drought (30% water holding capacity, WHC), alternating cycles of drying (30% WHC) and wetting (70% WHC), and well-watered conditions (70% WHC). 33P-labelled cowpea residues (Vigna unguiculate) and KH233PO4 were applied as fertilizers to calcareous and carbonate-free soils. Results: Under pre-sowing drought conditions, microbial incorporation of 33P from residue P into polar lipids was four times higher than from mineral P. Calcareous soils showed double the microbial biomass than carbonate-free soils. However, when fertilized with residue P, carbonate-free soils exhibited twice the acid phosphatase activity and a 3- to 6-fold greater 33P uptake into phospholipids normalized per unit microbial biomass C. Conclusion: Residue P enhances microbial growth, leading to increased P immobilization, especially in carbonate-free soils. Drought-triggered microorganisms efficiently acquire P from organic sources like residues. This increased microbial P immobilization under pre-sowing drought does not negatively affect plant growth, when a mineralizable organic P pool is consistently available. Regardless of the pre-sowing moisture conditions, residue P fertilization promotes a rapidly cycling microbial biomass-necromass pool, specifically in calcareous soils. This implies that residue P fertilization could be a sustainable, long-term strategy for continuous P supply in P-immobilizing calcareous soils, even under increasing drought conditions due to climate change.
AB - Background: While well-described for soil properties, we barely know how microbial traits determine the availability of various phosphorus (P) forms to crops. Aims: We traced the dynamics of mineral- versus residue-derived P applied to two contrasting soil types during wheat cultivation. Methods: The legacy effect of three pre-sowing moisture conditions was investigated: drought (30% water holding capacity, WHC), alternating cycles of drying (30% WHC) and wetting (70% WHC), and well-watered conditions (70% WHC). 33P-labelled cowpea residues (Vigna unguiculate) and KH233PO4 were applied as fertilizers to calcareous and carbonate-free soils. Results: Under pre-sowing drought conditions, microbial incorporation of 33P from residue P into polar lipids was four times higher than from mineral P. Calcareous soils showed double the microbial biomass than carbonate-free soils. However, when fertilized with residue P, carbonate-free soils exhibited twice the acid phosphatase activity and a 3- to 6-fold greater 33P uptake into phospholipids normalized per unit microbial biomass C. Conclusion: Residue P enhances microbial growth, leading to increased P immobilization, especially in carbonate-free soils. Drought-triggered microorganisms efficiently acquire P from organic sources like residues. This increased microbial P immobilization under pre-sowing drought does not negatively affect plant growth, when a mineralizable organic P pool is consistently available. Regardless of the pre-sowing moisture conditions, residue P fertilization promotes a rapidly cycling microbial biomass-necromass pool, specifically in calcareous soils. This implies that residue P fertilization could be a sustainable, long-term strategy for continuous P supply in P-immobilizing calcareous soils, even under increasing drought conditions due to climate change.
KW - Alternate drying/wetting cycles
KW - Climate change
KW - Legacy effects on microbial traits
KW - Phosphorus
KW - Pre-sowing moisture regime
KW - Sustainable agriculture
UR - http://www.scopus.com/inward/record.url?scp=85209139446&partnerID=8YFLogxK
U2 - 10.1007/s42729-024-02120-1
DO - 10.1007/s42729-024-02120-1
M3 - Article
AN - SCOPUS:85209139446
JO - Journal of Soil Science and Plant Nutrition
JF - Journal of Soil Science and Plant Nutrition
SN - 0718-9508
ER -