Details
Original language | English |
---|---|
Pages (from-to) | 144-147 |
Number of pages | 4 |
Journal | Procedia CIRP |
Volume | 111 |
Early online date | 6 Sept 2022 |
Publication status | Published - 2022 |
Event | 12th CIRP Conference on Photonic Technologies, LANE 2022 - Erlangen, Germany Duration: 4 Sept 2022 → 8 Sept 2022 |
Abstract
Parts built by laser-based powder bed fusion (PBF-LB) experience intervals of heating and cooling during the powder deposition and the selective melting of successive layers. Short time intervals of cooling can lead to heat accumulation resulting in discoloration of AISI 420 (X20Cr13) stainless steel parts. Discoloration occurs due to the formation of oxide layers, which negatively affect the corrosion resistance. This process is determined by the time-dependent influence of temperature and oxygen. Therefore, this study investigates effects of varied inter layer time on mechanical PBF-LB part properties and surface characteristics to prevent discoloration. EDX is used to analyze the chemical composition with regard to the chromium content as an indicator of reduced corrosion resistance. The results emphasize the need for implementing an minimum inter layer time greater than 12 s to prevent discoloration during the PBF-LB process with a layer thickness of 20 µm and a volume energy density of 113.3
Keywords
- Additive Manufacturing, AISI 420, Discoloration, Inter Layer Time, Laser-Based Powder Bed Fusion
ASJC Scopus subject areas
- Engineering(all)
- Control and Systems Engineering
- Engineering(all)
- Industrial and Manufacturing Engineering
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Procedia CIRP, Vol. 111, 2022, p. 144-147.
Research output: Contribution to journal › Conference article › Research › peer review
}
TY - JOUR
T1 - Discoloration of AISI 420 stainless steel in dependence of inter layer time during Laser-based Powder Bed Fusion
AU - Wahl, Jan Philipp
AU - Bernhard, Robert
AU - Hermsdorf, Jörg
AU - Kaierle, Stefan
PY - 2022
Y1 - 2022
N2 - Parts built by laser-based powder bed fusion (PBF-LB) experience intervals of heating and cooling during the powder deposition and the selective melting of successive layers. Short time intervals of cooling can lead to heat accumulation resulting in discoloration of AISI 420 (X20Cr13) stainless steel parts. Discoloration occurs due to the formation of oxide layers, which negatively affect the corrosion resistance. This process is determined by the time-dependent influence of temperature and oxygen. Therefore, this study investigates effects of varied inter layer time on mechanical PBF-LB part properties and surface characteristics to prevent discoloration. EDX is used to analyze the chemical composition with regard to the chromium content as an indicator of reduced corrosion resistance. The results emphasize the need for implementing an minimum inter layer time greater than 12 s to prevent discoloration during the PBF-LB process with a layer thickness of 20 µm and a volume energy density of 113.3
AB - Parts built by laser-based powder bed fusion (PBF-LB) experience intervals of heating and cooling during the powder deposition and the selective melting of successive layers. Short time intervals of cooling can lead to heat accumulation resulting in discoloration of AISI 420 (X20Cr13) stainless steel parts. Discoloration occurs due to the formation of oxide layers, which negatively affect the corrosion resistance. This process is determined by the time-dependent influence of temperature and oxygen. Therefore, this study investigates effects of varied inter layer time on mechanical PBF-LB part properties and surface characteristics to prevent discoloration. EDX is used to analyze the chemical composition with regard to the chromium content as an indicator of reduced corrosion resistance. The results emphasize the need for implementing an minimum inter layer time greater than 12 s to prevent discoloration during the PBF-LB process with a layer thickness of 20 µm and a volume energy density of 113.3
KW - Additive Manufacturing
KW - AISI 420
KW - Discoloration
KW - Inter Layer Time
KW - Laser-Based Powder Bed Fusion
UR - http://www.scopus.com/inward/record.url?scp=85141896097&partnerID=8YFLogxK
U2 - 10.1016/j.procir.2022.08.138
DO - 10.1016/j.procir.2022.08.138
M3 - Conference article
AN - SCOPUS:85141896097
VL - 111
SP - 144
EP - 147
JO - Procedia CIRP
JF - Procedia CIRP
SN - 2212-8271
T2 - 12th CIRP Conference on Photonic Technologies, LANE 2022
Y2 - 4 September 2022 through 8 September 2022
ER -