Directly comparing GW150914 with numerical solutions of Einstein's equations for binary black hole coalescence

Research output: Contribution to journalArticleResearchpeer review

Authors

  • The LIGO Scientific Collaboration
  • The Virgo Collaboration
  • Bruce Allen
  • Karsten Danzmann
  • Michele Heurs
  • Harald Lück
  • Daniel Steinmeyer
  • Henning Fedor Cornelius Vahlbruch
  • Benno Willke
  • Holger Wittel
  • Peter Aufmuth
  • A. Bisht
  • Stefan Kaufer
  • Christian Krüger
  • J. D. Lough
  • A. Sawadsky
  • Aditya Singh Mehra

External Research Organisations

  • California Institute of Caltech (Caltech)
  • Louisiana State University
  • American University Washington DC
  • Universita di Salerno
  • Monte S. Angelo University Federico II
  • University of Florida
  • Universite de Savoie
  • University of Sannio
  • Max Planck Institute for Gravitational Physics (Albert Einstein Institute)
  • National Institute for Subatomic Physics (Nikhef)
  • LIGO Laboratory
  • Instituto Nacional de Pesquisas Espaciais
  • Istituto Nazionale di Fisica Nucleare (INFN)
  • Inter-University Centre for Astronomy and Astrophysics India
  • Tata Institute of Fundamental Research (TIFR HYD)
  • University of Wisconsin Milwaukee
  • University of Pisa
  • Sezione di Pisa
  • Australian National University
  • Carson College of Business
  • Syracuse University
  • University of Birmingham
  • University of Glasgow
  • Hanyang University
  • University of Melbourne
  • Tsinghua University
  • University of Western Australia
  • Observatoire Côte d'Azur
  • Rochester Institute of Technology
  • Center for Interdisciplinary Exploration and Research in Astrophysics (CIERA)
  • Northwestern University
View graph of relations

Details

Original languageEnglish
Article number064035
JournalPhysical Review D
Volume94
Issue number6
Publication statusPublished - 14 Sept 2016

Abstract

We compare GW150914 directly to simulations of coalescing binary black holes in full general relativity, including several performed specifically to reproduce this event. Our calculations go beyond existing semianalytic models, because for all simulations - including sources with two independent, precessing spins - we perform comparisons which account for all the spin-weighted quadrupolar modes, and separately which account for all the quadrupolar and octopolar modes. Consistent with the posterior distributions reported by Abbott et al. [Phys. Rev. Lett. 116, 241102 (2016)] (at the 90% credible level), we find the data are compatible with a wide range of nonprecessing and precessing simulations. Follow-up simulations performed using previously estimated binary parameters most resemble the data, even when all quadrupolar and octopolar modes are included. Comparisons including only the quadrupolar modes constrain the total redshifted mass Mz [64 M-82 M], mass ratio 1/q=m2/m1 [0.6,1], and effective aligned spin χeff [-0.3,0.2], where χeff=(S1/m1+S2/m2)·L/M. Including both quadrupolar and octopolar modes, we find the mass ratio is even more tightly constrained. Even accounting for precession, simulations with extreme mass ratios and effective spins are highly inconsistent with the data, at any mass. Several nonprecessing and precessing simulations with similar mass ratio and χeff are consistent with the data. Though correlated, the components' spins (both in magnitude and directions) are not significantly constrained by the data: the data is consistent with simulations with component spin magnitudes a1,2 up to at least 0.8, with random orientations. Further detailed follow-up calculations are needed to determine if the data contain a weak imprint from transverse (precessing) spins. For nonprecessing binaries, interpolating between simulations, we reconstruct a posterior distribution consistent with previous results. The final black hole's redshifted mass is consistent with Mf,z in the range 64.0 M-73.5 M and the final black hole's dimensionless spin parameter is consistent with af=0.62-0.73. As our approach invokes no intermediate approximations to general relativity and can strongly reject binaries whose radiation is inconsistent with the data, our analysis provides a valuable complement to Abbott et al. [Phys. Rev. Lett. 116, 241102 (2016)].

ASJC Scopus subject areas

Cite this

Directly comparing GW150914 with numerical solutions of Einstein's equations for binary black hole coalescence. / The LIGO Scientific Collaboration; The Virgo Collaboration; Allen, Bruce et al.
In: Physical Review D, Vol. 94, No. 6, 064035, 14.09.2016.

Research output: Contribution to journalArticleResearchpeer review

The LIGO Scientific Collaboration, The Virgo Collaboration, Allen, B, Danzmann, K, Heurs, M, Lück, H, Steinmeyer, D, Vahlbruch, HFC, Willke, B, Wittel, H, Aufmuth, P, Bisht, A, Kaufer, S, Krüger, C, Lough, JD, Sawadsky, A & Singh Mehra, A 2016, 'Directly comparing GW150914 with numerical solutions of Einstein's equations for binary black hole coalescence', Physical Review D, vol. 94, no. 6, 064035. https://doi.org/10.48550/arXiv.1606.01262, https://doi.org/10.1103/physrevd.94.064035
The LIGO Scientific Collaboration, The Virgo Collaboration, Allen, B., Danzmann, K., Heurs, M., Lück, H., Steinmeyer, D., Vahlbruch, H. F. C., Willke, B., Wittel, H., Aufmuth, P., Bisht, A., Kaufer, S., Krüger, C., Lough, J. D., Sawadsky, A., & Singh Mehra, A. (2016). Directly comparing GW150914 with numerical solutions of Einstein's equations for binary black hole coalescence. Physical Review D, 94(6), Article 064035. https://doi.org/10.48550/arXiv.1606.01262, https://doi.org/10.1103/physrevd.94.064035
The LIGO Scientific Collaboration, The Virgo Collaboration, Allen B, Danzmann K, Heurs M, Lück H et al. Directly comparing GW150914 with numerical solutions of Einstein's equations for binary black hole coalescence. Physical Review D. 2016 Sept 14;94(6):064035. doi: 10.48550/arXiv.1606.01262, 10.1103/physrevd.94.064035
The LIGO Scientific Collaboration ; The Virgo Collaboration ; Allen, Bruce et al. / Directly comparing GW150914 with numerical solutions of Einstein's equations for binary black hole coalescence. In: Physical Review D. 2016 ; Vol. 94, No. 6.
Download
@article{42eed15c3b0d4b7a97c383f7be4b4694,
title = "Directly comparing GW150914 with numerical solutions of Einstein's equations for binary black hole coalescence",
abstract = "We compare GW150914 directly to simulations of coalescing binary black holes in full general relativity, including several performed specifically to reproduce this event. Our calculations go beyond existing semianalytic models, because for all simulations - including sources with two independent, precessing spins - we perform comparisons which account for all the spin-weighted quadrupolar modes, and separately which account for all the quadrupolar and octopolar modes. Consistent with the posterior distributions reported by Abbott et al. [Phys. Rev. Lett. 116, 241102 (2016)] (at the 90% credible level), we find the data are compatible with a wide range of nonprecessing and precessing simulations. Follow-up simulations performed using previously estimated binary parameters most resemble the data, even when all quadrupolar and octopolar modes are included. Comparisons including only the quadrupolar modes constrain the total redshifted mass Mz [64 M-82 M], mass ratio 1/q=m2/m1 [0.6,1], and effective aligned spin χeff [-0.3,0.2], where χeff=(S1/m1+S2/m2)·L/M. Including both quadrupolar and octopolar modes, we find the mass ratio is even more tightly constrained. Even accounting for precession, simulations with extreme mass ratios and effective spins are highly inconsistent with the data, at any mass. Several nonprecessing and precessing simulations with similar mass ratio and χeff are consistent with the data. Though correlated, the components' spins (both in magnitude and directions) are not significantly constrained by the data: the data is consistent with simulations with component spin magnitudes a1,2 up to at least 0.8, with random orientations. Further detailed follow-up calculations are needed to determine if the data contain a weak imprint from transverse (precessing) spins. For nonprecessing binaries, interpolating between simulations, we reconstruct a posterior distribution consistent with previous results. The final black hole's redshifted mass is consistent with Mf,z in the range 64.0 M-73.5 M and the final black hole's dimensionless spin parameter is consistent with af=0.62-0.73. As our approach invokes no intermediate approximations to general relativity and can strongly reject binaries whose radiation is inconsistent with the data, our analysis provides a valuable complement to Abbott et al. [Phys. Rev. Lett. 116, 241102 (2016)].",
author = "{The LIGO Scientific Collaboration} and {The Virgo Collaboration} and Abbott, {B. P.} and R. Abbott and Abbott, {T. D.} and Abernathy, {M. R.} and F. Acernese and K. Ackley and C. Adams and T. Adams and P. Addesso and Adhikari, {R. X.} and Adya, {V. B.} and C. Affeldt and M. Agathos and K. Agatsuma and N. Aggarwal and Aguiar, {O. D.} and L. Aiello and A. Ain and P. Ajith and Bruce Allen and A. Allocca and Altin, {P. A.} and S. Bose and Brown, {D. A.} and Y. Chen and Danilishin, {S. L.} and Karsten Danzmann and Hanke, {M. M.} and J. Hennig and Michele Heurs and Lee, {H. K.} and Harald L{\"u}ck and Nguyen, {T. T.} and J. Schmidt and P. Schmidt and M. Shaltev and Daniel Steinmeyer and L. Sun and Vahlbruch, {Henning Fedor Cornelius} and M. Wang and X. Wang and Y. Wang and Wei, {L. W.} and Benno Willke and Holger Wittel and L. Zhang and Y. Zhang and M. Zhou and Peter Aufmuth and A. Bisht and Stefan Kaufer and Christian Kr{\"u}ger and Lough, {J. D.} and A. Sawadsky and {Singh Mehra}, Aditya",
note = "Funding Information: From the Cardiovascular Center and Departments of Internal Medicine, Electrical and Computer Engineering and Radiology, University of Iowa and Iowa City Veterans Administration Hospitals, Iowa City, Iowa. This study was supported in part by Fellowship Grant 82-F-6 from the American Heart Association, Iowa Affiliate, Iowa City, Iowa, National Service Re• search Award Grant IF32HL06672-01 and Program Project Grant 14388 from the National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland and the U.S. Veterans Administration, Washington, D.C. ",
year = "2016",
month = sep,
day = "14",
doi = "10.48550/arXiv.1606.01262",
language = "English",
volume = "94",
journal = "Physical Review D",
issn = "2470-0010",
publisher = "American Institute of Physics",
number = "6",

}

Download

TY - JOUR

T1 - Directly comparing GW150914 with numerical solutions of Einstein's equations for binary black hole coalescence

AU - The LIGO Scientific Collaboration

AU - The Virgo Collaboration

AU - Abbott, B. P.

AU - Abbott, R.

AU - Abbott, T. D.

AU - Abernathy, M. R.

AU - Acernese, F.

AU - Ackley, K.

AU - Adams, C.

AU - Adams, T.

AU - Addesso, P.

AU - Adhikari, R. X.

AU - Adya, V. B.

AU - Affeldt, C.

AU - Agathos, M.

AU - Agatsuma, K.

AU - Aggarwal, N.

AU - Aguiar, O. D.

AU - Aiello, L.

AU - Ain, A.

AU - Ajith, P.

AU - Allen, Bruce

AU - Allocca, A.

AU - Altin, P. A.

AU - Bose, S.

AU - Brown, D. A.

AU - Chen, Y.

AU - Danilishin, S. L.

AU - Danzmann, Karsten

AU - Hanke, M. M.

AU - Hennig, J.

AU - Heurs, Michele

AU - Lee, H. K.

AU - Lück, Harald

AU - Nguyen, T. T.

AU - Schmidt, J.

AU - Schmidt, P.

AU - Shaltev, M.

AU - Steinmeyer, Daniel

AU - Sun, L.

AU - Vahlbruch, Henning Fedor Cornelius

AU - Wang, M.

AU - Wang, X.

AU - Wang, Y.

AU - Wei, L. W.

AU - Willke, Benno

AU - Wittel, Holger

AU - Zhang, L.

AU - Zhang, Y.

AU - Zhou, M.

AU - Aufmuth, Peter

AU - Bisht, A.

AU - Kaufer, Stefan

AU - Krüger, Christian

AU - Lough, J. D.

AU - Sawadsky, A.

AU - Singh Mehra, Aditya

N1 - Funding Information: From the Cardiovascular Center and Departments of Internal Medicine, Electrical and Computer Engineering and Radiology, University of Iowa and Iowa City Veterans Administration Hospitals, Iowa City, Iowa. This study was supported in part by Fellowship Grant 82-F-6 from the American Heart Association, Iowa Affiliate, Iowa City, Iowa, National Service Re• search Award Grant IF32HL06672-01 and Program Project Grant 14388 from the National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland and the U.S. Veterans Administration, Washington, D.C.

PY - 2016/9/14

Y1 - 2016/9/14

N2 - We compare GW150914 directly to simulations of coalescing binary black holes in full general relativity, including several performed specifically to reproduce this event. Our calculations go beyond existing semianalytic models, because for all simulations - including sources with two independent, precessing spins - we perform comparisons which account for all the spin-weighted quadrupolar modes, and separately which account for all the quadrupolar and octopolar modes. Consistent with the posterior distributions reported by Abbott et al. [Phys. Rev. Lett. 116, 241102 (2016)] (at the 90% credible level), we find the data are compatible with a wide range of nonprecessing and precessing simulations. Follow-up simulations performed using previously estimated binary parameters most resemble the data, even when all quadrupolar and octopolar modes are included. Comparisons including only the quadrupolar modes constrain the total redshifted mass Mz [64 M-82 M], mass ratio 1/q=m2/m1 [0.6,1], and effective aligned spin χeff [-0.3,0.2], where χeff=(S1/m1+S2/m2)·L/M. Including both quadrupolar and octopolar modes, we find the mass ratio is even more tightly constrained. Even accounting for precession, simulations with extreme mass ratios and effective spins are highly inconsistent with the data, at any mass. Several nonprecessing and precessing simulations with similar mass ratio and χeff are consistent with the data. Though correlated, the components' spins (both in magnitude and directions) are not significantly constrained by the data: the data is consistent with simulations with component spin magnitudes a1,2 up to at least 0.8, with random orientations. Further detailed follow-up calculations are needed to determine if the data contain a weak imprint from transverse (precessing) spins. For nonprecessing binaries, interpolating between simulations, we reconstruct a posterior distribution consistent with previous results. The final black hole's redshifted mass is consistent with Mf,z in the range 64.0 M-73.5 M and the final black hole's dimensionless spin parameter is consistent with af=0.62-0.73. As our approach invokes no intermediate approximations to general relativity and can strongly reject binaries whose radiation is inconsistent with the data, our analysis provides a valuable complement to Abbott et al. [Phys. Rev. Lett. 116, 241102 (2016)].

AB - We compare GW150914 directly to simulations of coalescing binary black holes in full general relativity, including several performed specifically to reproduce this event. Our calculations go beyond existing semianalytic models, because for all simulations - including sources with two independent, precessing spins - we perform comparisons which account for all the spin-weighted quadrupolar modes, and separately which account for all the quadrupolar and octopolar modes. Consistent with the posterior distributions reported by Abbott et al. [Phys. Rev. Lett. 116, 241102 (2016)] (at the 90% credible level), we find the data are compatible with a wide range of nonprecessing and precessing simulations. Follow-up simulations performed using previously estimated binary parameters most resemble the data, even when all quadrupolar and octopolar modes are included. Comparisons including only the quadrupolar modes constrain the total redshifted mass Mz [64 M-82 M], mass ratio 1/q=m2/m1 [0.6,1], and effective aligned spin χeff [-0.3,0.2], where χeff=(S1/m1+S2/m2)·L/M. Including both quadrupolar and octopolar modes, we find the mass ratio is even more tightly constrained. Even accounting for precession, simulations with extreme mass ratios and effective spins are highly inconsistent with the data, at any mass. Several nonprecessing and precessing simulations with similar mass ratio and χeff are consistent with the data. Though correlated, the components' spins (both in magnitude and directions) are not significantly constrained by the data: the data is consistent with simulations with component spin magnitudes a1,2 up to at least 0.8, with random orientations. Further detailed follow-up calculations are needed to determine if the data contain a weak imprint from transverse (precessing) spins. For nonprecessing binaries, interpolating between simulations, we reconstruct a posterior distribution consistent with previous results. The final black hole's redshifted mass is consistent with Mf,z in the range 64.0 M-73.5 M and the final black hole's dimensionless spin parameter is consistent with af=0.62-0.73. As our approach invokes no intermediate approximations to general relativity and can strongly reject binaries whose radiation is inconsistent with the data, our analysis provides a valuable complement to Abbott et al. [Phys. Rev. Lett. 116, 241102 (2016)].

UR - http://www.scopus.com/inward/record.url?scp=84990985966&partnerID=8YFLogxK

U2 - 10.48550/arXiv.1606.01262

DO - 10.48550/arXiv.1606.01262

M3 - Article

AN - SCOPUS:84990985966

VL - 94

JO - Physical Review D

JF - Physical Review D

SN - 2470-0010

IS - 6

M1 - 064035

ER -

By the same author(s)