Details
Original language | English |
---|---|
Pages (from-to) | 5-13 |
Number of pages | 9 |
Journal | Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science |
Volume | 34 |
Issue number | 1 |
Publication status | Published - Jan 2003 |
Externally published | Yes |
Abstract
This work focuses on the stress-induced transformation in solutionized and overaged single-crystal NiTi alloys. The potential role of detwinning on the recoverable strains was investigated both theoretically and also with temperature-cycling experiments. The detwinning is the growth of one variant within a martensite in expense of the other. It is shown that the experimental recoverable strains in tension (near 8.01 pct in the [123], 9.34 pct in the [111], and 7.8 pct in the [011] orientations) exceed the theoretical martensite (correspondent-variant pair (CVP) formation strains (6.49 pct in [123], 5.9 pct in [111], and 5.41 pct in [011]), lending further support that partial detwinning of martensite has occurred in both the solutionized and overaged specimens. In compression, the experimental recoverable strains are lower than the theoretical martensite (CVP) formation strain. In the compression cases, the detwinning strain contribution is calculated to be negligible in most orientations. The transformation strains observed in overaged NiTi are similar to the solutionalized NiTi, suggesting that incoherent precipitates do not restrict the detwinning of the martensite. For the [123] orientation, it is demonstrated that the thermal hysteresis is higher in solutionized NiTi compared to the overaged NiTi. The higher thermal hysteresis can be exploited in applications involving damping and shape stability, while the lower hysteresis is suited for actuators.
ASJC Scopus subject areas
- Physics and Astronomy(all)
- Condensed Matter Physics
- Engineering(all)
- Mechanics of Materials
- Materials Science(all)
- Metals and Alloys
Cite this
- Standard
- Harvard
- Apa
- Vancouver
- BibTeX
- RIS
In: Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, Vol. 34, No. 1, 01.2003, p. 5-13.
Research output: Contribution to journal › Article › Research › peer review
}
TY - JOUR
T1 - Detwinning in NiTi alloys
AU - Sehitoglu, Huseyin
AU - Hamilton, R.
AU - Canadinc, D.
AU - Zhang, X. Y.
AU - Gall, K.
AU - Karaman, I.
AU - Chumlyakov, Y.
AU - Maier, H. J.
N1 - Funding Information: Portions of the research are supported by a grant from the National Science Foundation, Contract No. CMS 99-00090, Mechanics and Materials Program (Arlington, VA), and Air Force Office of Scientific Research, Directorate of Aerospace and Materials Sciences (Arlington, VA). Professor Chumlyakov received support from the Russian Fund for Basic Researches, Grant Nos. 02-95-00350 and 99-03-32579.
PY - 2003/1
Y1 - 2003/1
N2 - This work focuses on the stress-induced transformation in solutionized and overaged single-crystal NiTi alloys. The potential role of detwinning on the recoverable strains was investigated both theoretically and also with temperature-cycling experiments. The detwinning is the growth of one variant within a martensite in expense of the other. It is shown that the experimental recoverable strains in tension (near 8.01 pct in the [123], 9.34 pct in the [111], and 7.8 pct in the [011] orientations) exceed the theoretical martensite (correspondent-variant pair (CVP) formation strains (6.49 pct in [123], 5.9 pct in [111], and 5.41 pct in [011]), lending further support that partial detwinning of martensite has occurred in both the solutionized and overaged specimens. In compression, the experimental recoverable strains are lower than the theoretical martensite (CVP) formation strain. In the compression cases, the detwinning strain contribution is calculated to be negligible in most orientations. The transformation strains observed in overaged NiTi are similar to the solutionalized NiTi, suggesting that incoherent precipitates do not restrict the detwinning of the martensite. For the [123] orientation, it is demonstrated that the thermal hysteresis is higher in solutionized NiTi compared to the overaged NiTi. The higher thermal hysteresis can be exploited in applications involving damping and shape stability, while the lower hysteresis is suited for actuators.
AB - This work focuses on the stress-induced transformation in solutionized and overaged single-crystal NiTi alloys. The potential role of detwinning on the recoverable strains was investigated both theoretically and also with temperature-cycling experiments. The detwinning is the growth of one variant within a martensite in expense of the other. It is shown that the experimental recoverable strains in tension (near 8.01 pct in the [123], 9.34 pct in the [111], and 7.8 pct in the [011] orientations) exceed the theoretical martensite (correspondent-variant pair (CVP) formation strains (6.49 pct in [123], 5.9 pct in [111], and 5.41 pct in [011]), lending further support that partial detwinning of martensite has occurred in both the solutionized and overaged specimens. In compression, the experimental recoverable strains are lower than the theoretical martensite (CVP) formation strain. In the compression cases, the detwinning strain contribution is calculated to be negligible in most orientations. The transformation strains observed in overaged NiTi are similar to the solutionalized NiTi, suggesting that incoherent precipitates do not restrict the detwinning of the martensite. For the [123] orientation, it is demonstrated that the thermal hysteresis is higher in solutionized NiTi compared to the overaged NiTi. The higher thermal hysteresis can be exploited in applications involving damping and shape stability, while the lower hysteresis is suited for actuators.
UR - http://www.scopus.com/inward/record.url?scp=0037278758&partnerID=8YFLogxK
U2 - 10.1007/s11661-003-0203-0
DO - 10.1007/s11661-003-0203-0
M3 - Article
AN - SCOPUS:0037278758
VL - 34
SP - 5
EP - 13
JO - Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science
JF - Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science
SN - 1073-5623
IS - 1
ER -